MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous -Affiliated to MG University, Kottayam)

UNDERGRADUATE PROGRAMMES

(HONOURS)

SYLLABUS

MCE-UGP (Honours)

(2024 Admission Onwards)

Faculty: Science

BoS: Chemistry

Programme: B Sc Chemistry (Honours)

Maharaja's College, Ernakulam (Govt. Autonomous) Park Avenue Road, Marine Drive Ernakulam– 682011, Kerala, India

CONTENTS

Sl. No	Title	Page No
1	Preface	3
2	Curriculum Committee	4
3	Curricular Structure of the MCE – UG (Honours) Programme	5
4	MCE Programme Outcomes (POs)	7
5	Syllabus Index	8
6	Syllabus: First Semester	12
7	Syllabus: Second Semester	32
8	Syllabus: Third Semester	52
9	Syllabus: Fourth Semester	84
10	Syllabus: Fifth Semester	111
11	Syllabus: Sixth Semester	146
12	Syllabus: Seventh Semester	187
13	Syllabus: Eighth Semester	229
14	Internship, Project & Online Courses	258

PREFACE

The Board of Studies in Chemistry take this opportunity to express our deep appreciation to all academicians and professionals who participated in the series of workshops organized by the Board for restructuring curriculum and syllabi of the Four Year UG Programme (FYUGP) (Honours) in Chemistry, Maharaja's College, Ernakulam.

The Higher Education Department, Government of Kerala is set to introduce a four-year undergraduate program commencing in the academic year 2024-2025. Based on the guidelines of the M. G. University for the Four-Year Undergraduate Programme (FYUGP), the U. G. BoS in Chemistry, Maharaja's College conducted several workshops with the wholehearted support and involvement of all the members of Board of Studies, the curricula and syllabi brings out in the present form.

We express our profound gratitude to the Honorable Vice-Chancellor, Pro-Vice Chancellor, Members of the Syndicate and Members of the Academic Council, Mahatma Gandhi University, for their sincere co-operation and guidance for completion of this work. Our special thanks are due to Chairman and members of the Governing Council, Chairman and members of the Academic Council, Maharaja's College, Ernakulam. We also extend our gratitude to Dr. Binitha N N, Professor. Department of Chemistry, University of Calicut. Kerala. Dr. Byju K V, Assistant Professor, Kannur University, Kerala, Dr. Beena Mathew, Professor, School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Dr. Benny Antony, Managing director, Arjuna Natural Pvt. Limited, Aluva, Kerala, and Dr. P Unnikrishnan, General Manager, Sud-Chemie India Pvt. Limited, Cochin, who were entrusted with the responsibility as experts for the revision of the syllabus of different subjects. The Board of Studies in Chemistry expresses wholehearted gratitude to all those who have helped in this endeavor. The task of preparing the curricula and syllabi and bringing it out in the present form for the FYUGP programme was not simple but it was possible with dedicated efforts and wholehearted support and involvement of all the members of the BoS and the faculty members of the Department of Chemistry. I would like to express my sincere thanks to all my fellow members of BoS and the faculty members of the Department of Chemistry for all their help, cooperation, encouragement, active participation and useful suggestions for the completion of syllabus.

> Dr. Femina K S Chairperson Board of Studies

CURRICULUM COMMITTEE

1. Dr. Femina K S, HOD & Professor, Department of Chemistry, Maharajas College, Ernakulam (Chairperson)

2. Faculty Members of Department of Chemistry, Maharaja's College, Ernakulam

- 1. Smt. Aneetha M R, Assistant Professor of Chemistry
- 2. Dr. Amrutha S Rajan, Associate Professor of Chemistry
- 3. Dr. Sreesha Sasi, Professor of Chemistry
- 4. Dr. Jolly V Antony, Professor of Chemistry
- 5. Dr. Suja N R, Associate Professor of Chemistry
- 6. Dr. Venugopal B, Associate Professor of Chemistry
- 7. Dr. Prasanthkumar K.P, Associate Professor of Chemistry
- 8. Dr. Zeena P Hamza, Associate Professor of Chemistry
- 9. Dr. Rejimon P.K, Assistant Professor of Chemistry
- 10. Dr. Sobhi Daniel, Professor of Chemistry
- 11. Dr. Seena E.B, Associate Professor of Chemistry
- 12. Dr. Sandhya P V, Professor of Chemistry
- 13. Dr. Neena George, Assistant Professor of Chemistry
- 14. Dr. Sajith Menon, Assistant Professor of Chemistry
- 15. Dr. Jincy E M, Assistant Professor of Chemistry
- 16. Dr. Julie Chandra C S., Assistant Professor of Chemistry
- 17. Smt. Jomol P John, Assistant Professor of Chemistry
- 18. Dr. Deepak J Prabhu, Assistant Professor of Chemistry
- 19. Sri. Sujithkumar M C, Assistant Professor of Chemistry
- 20. Dr. Asha S, Assistant Professor of Chemistry

EXTERNAL EXPERTS

- 1. Dr. Binitha N N, Professor. Department of Chemistry, University of Calicut. Kerala
- 2. Dr. Byju K V, Assistant Professor, Kannur University, Kerala
- 3. Dr. Beena Mathew, Professor, School of Chemical Sciences, Mahatma Gandhi University, Kottayam
- 4. Dr. Benny Antony, Jt Managing director, Arjuna Natural Pvt. Limited, Aluva, Kerala
- 5. Dr. P Unnikrishnan, General Manager, Sud-Chemie India Pvt. Limited, Cochin,

Curricular Structure of the MCE – UG(Honours) Programme
3 Year UG Degree – 6 Semesters

No.	Course Type	No. of Courses	Total Credits
1	Foundation: Ability Enhancement	4	12
	Courses (AEC)		
2	Foundation: Multi – disciplinary	3	9
	Courses (MDC)		
3	Foundation: Skill Enhancement	3	9
	Courses (SEC)		
4	Foundation: Value Addition	3	9
	Courses (VAC)		
5	Discipline Specific Courses: Major	17	68
	(DSC A/DSE)		
6	Discipline Specific Courses:	6	24
	Minor (DSC B & C)		
7	Internship		2
	Total	36	133

4 Year UG Degree (Honours) – 8 semesters

No.	Course Type	No. of Courses	Total Credits
1	Foundation: Ability Enhancement Courses (AEC)	4	12
2	Foundation: Multi – disciplinary Courses (MDC)	3	9
3	Foundation: Skill Enhancement Courses (SEC)	3	9
4	Foundation: Value Addition Courses (VAC)	3	9
5	Discipline Specific Courses: Major (DSC A/DSE)	17	68
6	Discipline Specific Courses: Minor (DSC B & C)	6	24
7	Discipline Capstone Courses: Major (DCC/DCE)	8	32
8	Research Project		12/8
9	Internship		2
	Total	44	177

4 Year UG Degree (Honours with Research) – 8 Semesters

Programme	Outcomes	(POs)
-----------	----------	-------

PO1	Critical Thinking and Analytical Reasoning
PO2	Scientific Reasoning and Problem Solving
PO3	Multidisciplinary/Interdisciplinary/Trans disciplinary Approach
PO4	Communication Skills
PO5	Leadership Skills
PO6	Social Consciousness and Responsibility
PO7	Equity, Inclusiveness and Sustainability
PO8	Moral and Ethical Reasoning
PO9	Networking and Collaborating
PO10	Lifelong Learning

Evaluation Scheme

(A) Courses without Practical

Components	Marks (4 Credits)	Marks (3 Credits)
Continuous Comprehensive Assessment (CCA)	30	25
End Semester Examination	70	50
Total	100	75

(B) Courses with Practical

Components	Marks (4 Credits)	Marks (3 Credits)		
Components	Theory	Practical	Theory	Practical	
Continuous Comprehensive Assessment (CCA)	25	15	15	15	
End Semester Examination	50	35	35	35	
Total	1	25	100		

SYLLABUS INDEX Name of Major: Chemistry

		SEMES	FER I						
Course Code	Title of the Cou	rse	Type of the Course	Credits	Hours/ week	Ι	Distri	our butio eek	on
			Course			L	Т	P	0
MCE1DSCCHE100	Fundamentals of Chemis	stry-1	DSC A/B	4	5	3		2	
MCE1MDCCHE100	Food Chemistry and Nut		MDC	3	4	2	2		
MCE1DSCCHE101	Chemistry Essentials: A Structure, Organic Cher and Natural Products	DSC B	4	5	3		2		
MCE1DSCCHE102	Foundations of Atomic Molecular Chemistry		DSC B	4	5	3		2	
MCE1DSCCHE103	Building blocks of life: structure, Organic Cher and Proteins	DSC B	4	5	3		2		
L - Lecture, T - Tu	torial, P — Practical/Pra	acticum, C	O — Others						
		SEMEST	TER II						
Course Code	Title of the Course		Type of the Course	Credits	Hours/ week	Hour Distribution /week L T P O			
MCE2DSCCHE100	Fundamentals of Chemi	stry_?	DSC A/B	4	5	L 3	1	2	U
MCE2MDCCHE100	Diary Chemistry	5ti y-2	MDC	3	4	2		2	
MCE2DSCCHE101	Fundamentals of Analy Phytochemistry	tical and	DSC B	4	5	3		2	
MCE2DSCCHE102	Underlying Principles of Macroworld	of the	DSC B	4	5	3		2	
MCE2DSCCHE103	Unravelling Analytical techniques, Organic rea and Biomolecules	octions	DSC B	4	5	3		2	
		SEMEST	ER III						
Course Code	Title of the Cou	rse	Type of the Course	Credits	Hours/ week		Distri /w	eek	
						L	Т	P	0
MCE3DSCCHE200	Inorganic Chemistry-	1	DSC A	4	5	3	_	2	
MCE3DSCCHE201	Organic Chemistry-1	1	DSC A	4	5	3	_	2	
MCE3DSECHE200	Basic Analytical Chemistry			4	4	4		0	
MCE3DSECHE201	Introduction to Nanoscience	Any one	DSE	4	4	4		0	
MCE3DSECHE202	Safe Laboratory Practices in Chemistry			4	4	4		0	
MCE3MDCCHE200	Chemistry in Everyda	ay Life	MDC	3	3	3		0	
MCE3VACCHE200	Forensic Chemistry		VAC	3	3	3		0	

MCE3DSCCHE202	Inorganic and Organic Chemistry (Minor for Others)		DSC B	4	5	3		2		
		SEMEST	ER IV							
Course Code	Title of the Co	urse	Type of the Course	Credits	Hours/ week	Hour Distributi /week L T P		Distribution /week		
MCE4DSCCHE200	Organic Chemistry-2		DSC A	4	5	3	-	2	0	
MCE4DSCCHE201	Physical Chemistry- 1		DSC A	4	5	3		2		
MCE4DSECHE200	Polymer	ny one	DSE	4	4	4		0		
MCE4DSECHE201	Food Chemistry	5		4	4	4		0		
MCE4SECCHE200	Basic Analytical and Cosmetic Chemistry		SEC	3	3	3		0		
MCE4VACCHE200	Basic Environmental C	Chemistry	VAC	3	3	3		0		
MCE4DSCCHE202	Fundamentals of Physical Chemistry (Minor for Others)		DSC C	4	5	3		2		
MCE4INTCHE200	Internship			2						
		SEMEST	TER V			•			•	
Course Code	Title of the Co	urse	Type of the Course	Credits	Hours/ week		Hour Distribution /week		1	
						L	Τ	P	0	
MCE5DSCCHE300 MCE5DSCCHE301	Organic Chemistry - 3		DSC A DSC A	4 4	5	3		2		
MCE5DSECHE300	Physical Chemistry- 2 Quantum Mechanics,		DSC A	4	5	5				
	Spectroscopy & Group Theory			4	4	4		0		
MCE5DSECHE301	Spectroscopy & Group Theory Green chemistry for sustainable development	Any three	DSE	4	4	4		0		
MCE5DSECHE301 MCE5DSECHE302	Spectroscopy & Group Theory Green chemistry for sustainable development Environmental Chemistry	Any	DSE							
MCE5DSECHE302 MCE5DSECHE303	Spectroscopy & Group TheoryGreen chemistry for sustainable developmentEnvironmental ChemistryNanotechnology for Energy Applications	Any	DSE	4	4 4 4 4	4 4 4		0 0 0 0		
MCE5DSECHE302 MCE5DSECHE303 MCE5DSECHE304	Spectroscopy & Group TheoryGreen chemistry for sustainable developmentEnvironmental ChemistryNanotechnology for Energy ApplicationsMedicinal Chemistry	Any three	DSE	4 4 4 4 4	4 4 4 4 4 4	4 4 4 4		0 0 0 0		
MCE5DSECHE302 MCE5DSECHE303	Spectroscopy & Group TheoryGreen chemistry for sustainable developmentEnvironmental ChemistryNanotechnology for Energy ApplicationsMedicinal ChemistryMain Group Elements	Any three	DSE	4 4 4	4 4 4 4	4 4 4		0 0 0 0		
MCE5DSECHE302 MCE5DSECHE303 MCE5DSECHE304	Spectroscopy & Group TheoryGreen chemistry for sustainable developmentEnvironmental ChemistryNanotechnology for Energy ApplicationsMedicinal Chemistry	Any three	DSE SEC	4 4 4 4 4	4 4 4 4 4 4	4 4 4 4		0 0 0 0		
MCE5DSECHE302 MCE5DSECHE303 MCE5DSECHE304 MCE5DSECHE305	Spectroscopy & Group TheoryGreen chemistry for sustainable developmentEnvironmental ChemistryNanotechnology for Energy ApplicationsMedicinal ChemistryMain Group Elements Analytical Chemistry a	Any three	SEC	4 4 4 4 4 4 4	4 4 4 4 4 4 4	4 4 4 4 4 4		0 0 0 0 0 0		
MCE5DSECHE302 MCE5DSECHE303 MCE5DSECHE304 MCE5DSECHE305	Spectroscopy & Group TheoryGreen chemistry for sustainable developmentEnvironmental ChemistryNanotechnology for Energy ApplicationsMedicinal ChemistryMain Group Elements Analytical Chemistry a	Any three and SEMEST	SEC ER VI Type of the	4 4 4 4 4 4 4	4 4 4 4 4 4 4	4 4 4 4 3	Distr /v	0 0 0 0 0 0 0 0 0 0		
MCE5DSECHE302 MCE5DSECHE303 MCE5DSECHE304 MCE5DSECHE305 MCE5SECCHE300 Course Code	Spectroscopy & Group Theory Green chemistry for sustainable development Environmental Chemistry Nanotechnology for Energy Applications Medicinal Chemistry Main Group Elements Analytical Chemistry a Professional skills	Any three und SEMEST urse	SEC ER VI Type of the Course	4 4 4 4 3 Credits	4 4 4 4 3 Hours/ week	4 4 4 4 3]	Distr	0 0 0 0 0 0 0 0 0 0 0 0	on 0	
MCE5DSECHE302 MCE5DSECHE303 MCE5DSECHE304 MCE5DSECHE305 MCE5SECCHE300	Spectroscopy & Group Theory Green chemistry for sustainable development Environmental Chemistry Nanotechnology for Energy Applications Medicinal Chemistry Main Group Elements Analytical Chemistry a Professional skills	Any three und SEMEST urse	SEC ER VI Type of the	4 4 4 4 4 3	4 4 4 4 3 Hours/	4 4 4 4 4 3	Distr /v	0 0 0 0 0 0 0 0 0 0		

MCE6DSECHE300	Organic Chemistry- 4	Any	DSE	4	5	3	2	
MCE6DSECHE301	Rubber Technology	one		4	5	3	2	
MCE6DSECHE302	Industrial Inorganic Chemistry and Nuclear Chemistry			4	4	4	0	
MCE6DSECHE303	Spectroscopic Methods of Chemical Analysis	Any one	DSE	4	4	4	0	
MCE6DSECHE304	Fundamentals of Biochemistry			4	4	4	0	
MCE6SECCHE300	Data Analysis using Python and Soft skills		SEC	3	3	3	0	
MCE6VACCHE300	Intellectual Property Rights	A		3	3	3	0	
MCE6VACCHE301	Research Methodology for Chemistry	Any one	VAC	3	3	3	0	

SEMESTER VII										
Course Code	Title of the Course		Type of the Course	Credits	Hours/ week	Hour Distribution /week				
			Course			L	Т	Р	0	
MCE7DCCCHE400	Coordination and Organometallic Chemistry		DCC	4	4	4		0		
MCE7DCCCHE401	Organic Chemistry-5		DCC	4	5	3		2		
MCE7DCCCHE402	Molecular Spectroscopy		DCC	4	4	4		0		
MCE7DCECHE400	Drug Therapy and Drug Design	Any three			4	4	4		0	
MCE7DCECHE401	Industrial Chemistry			4	4	4		0		
MCE7DCECHE402	Advanced Chemistry of Main Group Elements		DCE	4	4	4		0		
MCE7DCECHE403	Statistical Thermodynamics and Bioenergetics			4	4	4		0		
MCE7DCECHE404	Novel Inorganic Solids			4	4	4		0		
MCE7DSECHE400	Analytical Chemistry			4	4	4		0		
MCE7DSECHE401	Biophysical Chemistry		DSE*	4	4	4		0		
MCE7DSECHE402	Nano chemistry and Tech	nology *M		4	4	4		0		

	SEMESTER VIII									
Course Code	Title of the Course		Type of the Course	Credits	Hours/ week	D L	Ho istril T	our butic P	on O	
MCE8DCCCHE400	Advanced Coordin Organometallic Cl			DCC	4	6	2		4	
MCE8DCCCHE401	Physical Chemistr	y- 4		DCC	4	6	2		4	
MCE8DCECHE400	Organic Chemistry-6			4	5	3		2		
MCE8DCECHE401	Group Theory and Quantum Chemistry				4	4	4		0	
MCE8DCECHE402	Instrumental Methods of Chemical Analysis	Any two	For B Sc (Hons.) without research	DCE	4	4	4		0	
MCE8DCECHE403	Molecular Modelling	A			4	4	4		0	
MCE8DCECHE404	Crystallography and Electrochemistry				4	4	4		0	
MCE8PRJCHE400	Project		PRJ	8						
MCE8PRJCHE401	Project		PRJ	12						

SEMESTER I

RET START IT	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B. Sc CHEMISTRY	B. Sc CHEMISTRY(Hons.)				
Course Name	Fundamentals of Ch	Fundamentals of Chemistry - I				
Type of Course	DSC A					
Course Code	MCE1DSCCHE100					
Course Level	100-199					
Course Summary	This course covers the basic principles and concepts of atoms, elements, compounds, and fundamentals of organic chemistry. Students explore atomic structure, electron displacements in organic chemistry, reactive intermediates, and the periodic table to understand the foundation of chemical interactions.				explore reactive	
Semester	Ι		Credits		4	Total
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours
	8	3		1		75
Pre-requisites, if any	Atomic models (J.J. T	homson m	odel and R	utherford mo	odel)	

CO No.	Expected Course Outcome	Learning Domains *	PO No.			
Upon th	Upon the completion of the course, student will be able to:					
1	Apply atomic models to forecast and explain electronic configurations, atomic behaviour, and characteristics.	А	1, 2			
2	Describe the relevance of organic chemistry, catenation and hybridisation.	U	1, 2, 10			
3	Evaluate electron displacement patterns in organic molecules using arrow notation.	Е	1, 2			
4	Utilize arrow-pushing mechanisms to illustrate and solve simple chemical reactions involving reactive intermediates.	А	1, 2			
5	Analyse periodic trends, the relationship between electronic configuration and the chemical reactivity of elements, including the formation of chemical bonds.	An	1, 2			
6	Identify metals through flame and spot tests, chloride in water, and lead in food samples, and acquire skill in organic preparation.	S	1, 2, 10			
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
		Atomic Structure		-
	1.1	Atomic spectrum of hydrogen atom, explanation using Bohr atom model, limitations of Bohr atom model.	4	1
	1.2	Dual nature of matter, de Broglie equation, Heisenberg's uncertainty principle and its significance.	2	1
1	1.3	Concept of orbit and orbital. Types of orbitals, shapes of s , p and d orbitals.	2	1
	1.4	Quantum numbers and their significance.	2	1
	1.5	Pauli's Exclusion Principle, Hund's rule of maximum multiplicity and Aufbau principle.	2	1
	1.6	Electronic configuration of atoms (upto atomic number 30). Stability of half-filled and completely filled electronic configurations.	3	1
		Fundamentals of Organic Chemistry		
	2.1	Relevance of organic chemistry in day-to-day life (with 2-3 examples). Carbon: catenation and hybridisations (with examples ethane, ethene and ethyne).	3	2
2	2.2	Arrow notations, bond fissions: curved arrow notation, drawing electron displacements with curved arrows, curved and fishhook arrows in organic reaction mechanisms. Polarity of bonds (basic concepts only).	2	3, 4
	2.3	Homolysis and heterolysis with examples. Reactive intermediates: formation, structure and stability of carbocations, carbanions, and free radicals.	4	3, 4
	2.4	Electron displacement effects: inductive effect- influence of inductive effect in the acidity of carboxylic acids. Resonance effect (delocalization, contributing structures, and stability) – hyperconjugation.	6	3, 4
		Chemistry of Elements and Molecules		
	3.1	Modern periodic law $-\log$ form periodic table. Classification of elements- <i>s</i> , <i>p</i> , <i>d</i> and <i>f</i> block, metal, non-metals and metalloids.	4	5
	3.2	Diagonal relationship and anomalous behaviour.	1	5
3	3.3	Periodicity in properties: Atomic and ionic radii - ionization enthalpy - electron affinity (electron gain enthalpy) – electronegativity. Electronegativity scales: Pauling Scale.	5	5
	3.4	Effective nuclear charge – Slater rule and its applications.	2	5
	3.5	Valency and oxidation state with examples.	1	5

	3.6	Introduction to molecules- types of bonds, ionic bond, covalent bond, coordinate bond.	2	5		
		Foundation Course - 1: Practical				
4	4.1	 Demonstration of atomic models using software (non-evaluative) Detection of sodium, potassium, calcium, barium and strontium ions through flame test. Spot test of nickel, zinc and copper. Chloride ion detection in well water and tap water. Detection of lead in food samples. Draw structures of simple organic molecules and resonance structures using chem-sketch / chemdraw. Preparation of 5-nitrosalicylic acid from salicylic acid. Preparation of <i>p</i>-nitroacetanilide from acetanilide. 	30	6		
5	Teacher Specific Content					

	Classroom Procedure (Mode of transaction)
Teaching and Learning Approach	 Lecture sessions Interactive sessions Discussions Demonstrations and experiments to engage students actively Use of visual aids like presentations, videos, and models to enhance understanding Encourage students to ask questions during or after the lectures Begin with safety instructions Guidelines for lab work Allow students to conduct experiments under supervision (for lab work) Use of virtual lab to model chemical reactions
Assessment Types	 MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory (25 Marks) i) Assignments: 5 marks ii) MCQ: 10 marks iii) Viva: 5 marks iv) Involvement in classroom activities: 5 marks Practical (15 Marks) i) Lab skill / analysis: 15 marks B. End Semester Examination (ESE) Theory (50 Marks- 1.5 Hrs) i) MCQ 10 questions: 10 x 1 = 10 ii) Short answer 4 questions (out of 6): 4 x 3 = 12 iii) Short essay 4 questions (out of 6): 4 x 7 = 28

Practical (35 Marks-1 Hr)

- i) Lab report: 10
- ii) Viva: 15
- iii) Writing procedure: 10

References

- 1. R. Puri, L. R. Sharma and K. C. Kalia, *Principles of Inorganic Chemistry*, Vikas Publishing Co. Jalandhar, 2013.
- 2. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn. Chapman & Hall, 2009.
- P. W. Atkins and J. de Paula, *Physical Chemistry*, 11th Edn. Oxford University Press, 2018.
- 4. R.T Morrison, R.N. Boyd and S.K. Bhattacharjee, *Organic Chemistry*, 7th Edn. Dorling Kindersley (India) Pvt. Ltd (Pearson Education), 2011.
- 5. T.W. Graham Solomon, C.B. Fryhle, S.A. Snyder, *Organic Chemistry*, John Wiley & Sons, 2014.
- 6. A. Bahl, and B.S. Bahl, Advanced Organic Chemistry, S. Chand, 2010.
- F. A. Cotton, G. Wilkinson and P. L. Gaus, *Basic Inorganic Chemistry*, 3rd Edn. John Wiley, 2007.
- 8. D. F. Shriver and P. W. Atkins, *Inorganic Chemistry*, 4th Edn. Oxford University Press, 2006.
- 9. Vogels Textbook of Quantitative Chemical Analysis, 6th Edn. Pearson Education Ltd.
- 10. F. P. Miller, A. F. Vandome, McB. John, Flame Test, VDM Publishing, 2010.
- 11. S M. Basavarajaiah, G. Y. Nagesh, K. R. Reddy, *Compendious Practical Organic Chemistry: Preparations, Isolation, and Chromatography*, Notion Press, 2021.

SUGGESTED READINGS

- 1. J. E. Huheey, E. A. Keitler and R. L. Keitler, *Inorganic Chemistry–Principles of Structure and Reactivity*, 4th Edn, Pearson Education, New Delhi, 2013.
- 2. I, Clayden, I. Greeves, S. Warren and P. Wothers, *Organic Chemistry*, 2nd Edn. Oxford University Press, 2012.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme						
Course Name	Food Chemistry and	Food Chemistry and Nutrition				
Type of Course	MDC	MDC				
Course Code	MCE1MDCCHE10	MCE1MDCCHE100				
Course Level	100-199					
Course Summary	This course provides a comprehensive understanding of the composition and health implications of various food items.				position	
Semester	Ι		Credits		3	Total
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours
	8	2		1		60
Pre-requisites, if any						

CO No.	Expected Course Outcome	Learning Domains *	PO No		
Upon the completion of the course, student will be able to:					
1	Describe the concept of nutrition.	U	1, 2, 3		
2	Identify the use of various food additives.	А	1, 3, 10		
3	Describe the health effects of food adulterants.	U	1, 2, 3, 6, 8, 10		
4	Evaluate different adulterants in food.	Е	1, 2, 3, 6, 10		
5	Apply the concept of food chemistry to conduct simple laboratory experiments.	А	1, 2, 3, 4, 10		
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT

Content for	· Classroom	transaction	(Units)
--------------------	-------------	-------------	---------

		•		1
		Introduction to Nutrition & Food Additives		
	1.1	Functions of food, nutrients in food- energy yielding nutrients (carbohydrates, proteins and lipids) and protective nutrients (vitamins and minerals).	3	1
1	1.2	Food additives- definition, importance of food additives, types of additives -natural, synthetic and artificial- with one example. E- number.	5	2
	1.3	Preservatives, food colours, flavour enhancers, sweeteners, emulsifiers, stabilizer, glazing agents, thickeners, gelling agents. (definition and applications with examples).	7	2
		Food Adulteration and Safety		
	2.1	Food adulterants- definition, types (intentional and incidental contamination) and health effects.	3	3
2	2.2	Common adulterants in different foods, their health effects and detection: milk, ghee, butter, honey, sweets, chilli powder, turmeric, tea, sugar and salt, black pepper, wheat and rice.	7	3
-	2.3	Food adulteration act- objectives.	1	4
-	2.4	Modern food habits- introduction, health effects of fast food, junk food and instant food. Composition and health effects of soft drinks. a comparative study of traditional and modern food habits	4	4
		Food Chemistry and Nutrition Practical		
		 Detection of adulterants in food items-milk, turmeric powder and chili powder. Demonstration of preparation of value-added 		
3	3.1 3. To fin	food products- jam, squash.3. To find out the moisture content of a given food sample by Lab oven method.	30	5
		4. Test the solubility of vegetable oils in different solvents.		
		Teacher Specific Content		
4 –				

Teaching and Learning	Classroom Procedure (Mode of transaction)
Approach	1. Lecture sessions

	2. Interactive sessions
	3. Discussions
	4. Demonstrations and experiments to engage students actively
	5. Use of visual aids like presentations, videos, and models to enhance
	understanding
	6. Encourage students to ask questions during or after the lectures
	7. Begin with safety instructions
	8. Guidelines for lab work
	9. Allow students to conduct experiments under supervision (for lab work)
	10. Use of statistical software for food analysis
	MODE OF ASSESSMENT
	A Continuous Comprohansiva Assassment (CCA)
	A. Continuous Comprehensive Assessment (CCA)
	Theory (15 Marks)
	i) Assignments: 5 marks
	ii) MCQ: 10 marks
	Practical (15 Marks)
Assessment	i) Lab involvement / report /Lab test
Types	B. End Semester Examination
	Theory (35 Marks- 45 minutes)
	i) MCQ 35 questions: $35 \times 1 = 35$
	Practical (35 Marks- 1Hr)
	i) Lab report: 10
	ii) Viva: 10
	iii) Writing procedure: 15

References

- 1. M. Swaminathan, Food Science and Experimental Foods, Ganesh and Company, 2005.
- 2. Jayashree Ghosh, *Fundamental Concepts of Applied Chemistry*, S. Chand & Co. Publishers, 2010.
- 3. Thankamma Jacob, *Text Books of Applied Chemistry for Home Science and Allied Sciences*, Macmillan, 2015.
- 4. Sreelakshmi, Food Science, New Age, 2018.
- 5. S. Roday, Food Science and Nutrition, 3rd Edn. Oxford University Press, 2018.
- 6. M. Weaver, J. R. Daniel, The Food Chemistry Laboratory, CRC Press, 2005.
- 7. I, Bevier, Food and Nutrition Laboratory Manual, Forgotten Books, 2018.
- 8. S. Sehgal, A Laboratory Manual of Food Analysis, International Publishing, 2016.
- 9. T. P. Coultate, *Food The Chemistry of its Components*, Royal Society of Chemistry, London, 2000.
- 10. M. Zeece, Introduction to the Chemistry of Food, Elsevier Science, 2020.

A REPORT OF	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme						
Course Name	Chemistry E Natural Pro		Atomic St	ructure, Organi	c Chemistry	and
Type of Course	DSC B	DSC B				
Course Code	MCE1DSCCHE101					
Course Level	100-199	100-199				
Course Summary	This course covers the basic principles and concepts of atoms, elements, compounds, and fundamentals of organic chemistry and natural products. Students explore atomic structure, electron displacements in organic chemistry, reactive intermediates, and the relevance of carbohydrates, vitamins, steroids, hormones and lipids.					
Semester	I Credits 4 Total				Total	
Course Details	Learning Approach	Lecture 3	Tutorial	Practical/ Practicum	Others	Hours 75
Pre-requisites, if any		3		1		13

CO No.	Expected Course Outcome	Learning Domains *	PO No.
Upon th	he completion of the course, student will be able to:		
1	Apply atomic models to forecast and explain electronic configurations, atomic behaviour, and characteristics.	А	1, 2
2	Describe the relevance of organic chemistry, catenation and hybridisation.	U	1, 2, 10
3	Evaluate electron displacement patterns in organic molecules using arrow notation.	Е	1, 2
4	Utilize arrow-pushing mechanisms to illustrate and solve simple chemical reactions involving reactive intermediates.	А	1, 2
5	Describe the chemistry of natural products with their biological significance.	U	1, 2, 3
6	Identify metals through flame and spot tests, chloride in water, and lead in food samples, and acquire skill in organic preparation.	S	1, 2, 10
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)			

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
		Atomic Structure		1
	1.1	Atomic spectrum of hydrogen atom, explanation using Bohr atom model, limitations of Bohr atom model.	4	1
	1.2	Dual nature of matter, de Broglie equation, Heisenberg's uncertainty principle and its significance.	2	1
1	1.3	Concept of orbit and orbital. Types of orbitals, shapes of s , p and d orbitals.	2	1
	1.4	Quantum numbers and their significance.	2	1
	1.5	Pauli's Exclusion Principle, Hund's rule of maximum multiplicity and Aufbau principle.	2	1
	1.6	Electronic configuration of atoms (upto atomic number 30). Stability of half-filled and completely filled electronic configurations.	3	1
		Fundamentals of Organic Chemistry		
	2.1	Relevance of organic chemistry in day-to-day life (with 2-3 examples). Carbon: catenation and hybridisations (with examples ethane, ethene and ethyne).	3	2
2	2.2	Arrow notations, bond fissions: curved arrow notation, drawing electron displacements with curved arrows, curved and fishhook arrows in organic reaction mechanisms. Polarity of bonds (basic concepts only).	2	3, 4
	2.3	Homolysis and heterolysis with examples. Reactive intermediates: formation, structure and stability of carbocations, carbanions, and free radicals.	4	3, 4
	2.4	Electron displacement effects: inductive effect- influence of inductive effect in the acidity of carboxylic acids. Resonance effect (delocalization, contributing structures, and stability) – hyperconjugation.	6	3, 4
		Chemistry of Natural Products		
3	3.1	Carbohydrates: Classification, Structure of glucose, fructose and sucrose. Oxidation of glucose, fructose and sucrose. Mutarotation, Inversion and fermentation of cane sugar.	6	5

		Industrial applications of cellulose.		
	3.2	Vitamins : Classification, sources, biological functions and deficiency diseases of vitamin A, B1, B2, B3, B5, B12, C and D.	4	5
	3.3	Steroids - General introduction, physiological importance of cholesterol and bile acids.	2	5
	3.4	Lipids: Classification - Simple lipids and complex lipids with examples, biological functions of oils and fats, Rancidity.	3	5
		Foundation Course I Practical		
4	4.1	 Demonstration of atomic models using software (non-evaluative) Detection of sodium, potassium, calcium, barium and strontium ions through flame test. Spot test of nickel, zinc and copper. Chloride ion detection in well water and tap water. Detection of lead in food samples. Identification of Carbohydrates: Glucose, fructose, sucrose. Draw structures of simple organic molecules and resonance structures using chem-sketch / chemdraw. Preparation of 5-nitrosalicylic acid from salicylic acid. Preparation of <i>p</i>-nitroacetanilide from acetanilide. 	30	6
_		Teacher Specific Content		1
5				

	Classroom Procedure (Mode of transaction)
Teaching and	 Lecture sessions Interactive sessions Discussions Demonstrations and experiments to engage students actively Use of visual aids like presentations, videos, and models to
Learning	enhance understanding Encourage students to ask questions during or after the lectures Begin with safety instructions Guidelines for lab work Allow students to conduct experiments under supervision (for lab
Approach	work) Use of virtual lab to model chemical reactions
Assessment	MODE OF ASSESSMENT
Types	A. Continuous Comprehensive Assessment (CCA)

Theory (25 Marks)
i) Assignments: 5 marks
ii) MCQ: 10 marks
iii) Viva: 5 marks
iv) Involvement in classroom activities: 5 marks
Practical (15 Marks)
i) Lab skill / analysis: 15 marks
D. End Converter Exercise the
B. End Semester Examination
Theory (50 Marks- 1.5 Hrs)
i) MCQ 10 questions: $10 \ge 10$
ii) Short answer 4 questions (out of 6): $4 \times 3 = 12$
iii) Short essay 4 questions (out of 6): $4 \ge 7 = 28$
Practical (35 Marks- 1 Hr)
i) Lab report: 10
ii) Viva: 15
iii) Writing procedure: 10

References

- 1. B. R. Puri, L. R. Sharma and K. C. Kalia, *Principles of Inorganic Chemistry*, Vikas Publishing Co. Jalandhar, 2013.
- 2. J. D. Lee, Concise Inorganic Chemistry, 5thEdn. Chapman & Hall, 2009.
- 3. P. W. Atkins and J. de Paula, *Physical Chemistry*, 11thEdn. Oxford University Press, 2018.
- 4. R.T Morrison, R.N. Boyd and S.K. Bhattacharjee, *Organic Chemistry*, 7thEdn. Dorling Kindersley (India) Pvt. Ltd (Pearson Education), 2011.
- 5. T.W. Graham Solomon, C.B. Fryhle, S.A. Snyder, *Organic Chemistry*, John Wiley & Sons, 2014.
- 6. A. Bahl, and B.S. Bahl, Advanced Organic Chemistry, S. Chand, 2010.
- 7. Finar, I. L. Organic Chemistry, Volume 2 Stereochemistry and the Chemistry of Natural Products;5th ed.; Pearson, 2002.
- 8. Vogels Textbook of Quantitative Chemical Analysis, 6th Edn. Pearson Education Ltd.
- 9. F. P. Miller, A. F. Vandome, McB. John, Flame Test, VDM Publishing, 2010.
- 10. S M. Basavarajaiah, G. Y. Nagesh, K. R. Reddy, Compendious Practical Organic Chemistry: Preparations, Isolation, and Chromatography, Notion Press, 2021.

Suggested Readings

- 1. J.E. Huheey, E.A. Keitler and R.L. Keitler, *Inorganic Chemistry–Principles of Structure and Reactivity*, 4th Edn, Pearson Education, New Delhi, 2013.
- 2. I. Clayden, I. Greeves, S. Warren and P. Wothers, *Organic Chemistry*, 2nd Edn. Oxford University Press, 2012.

Receiption of the second	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme						
Course Name	Foundations of	Atomic ar	nd Molecul	ar Chemistı	у	
Type of Course	DSC B					
Course Code	MCE1DSCCHE102					
Course Level	100-199					
Course Summary	This course covers the basic principles and concepts of atoms, elements, compounds, and fundamentals of organic chemistry. Students explore atomic structure, electron displacements in organic chemistry, reactive intermediates, and the periodic table to understand the foundation of chemical interactions.					
Semester	I Credits 4 Total			Total		
Course Details	Learning Approach	Lecture 3	Tutorial	Practical 1	Others	Hours 75
Pre-requisites, if any	Atomic models (J.J. Thomson model and Rutherford model)					

CO No.	Expected Course Outcome	Learning Domains *	PO No.
Upon the	e completion of the course, student will be able to:		
1	Apply atomic models to forecast and explain electronic configurations, atomic behavior, and characteristics.	А	1,2
2	Describe the relevance of organic chemistry, catenation and hybridization.	U	1,2,10
3	Evaluate electron displacement patterns in organic molecules using arrow notation.	Е	1,2
4	Utilize arrow-pushing mechanisms to illustrate and solve simple chemical reactions involving reactive intermediates.	А	1,2
5	Analyze periodic trends, the relationship between electronic configuration and the chemical reactivity of elements, including the formation of chemical bonds.	An	1,2
6	Analyze the symmetry elements, symmetry operations and molecular point groups	An	1, 2
7	Identify metals through flame and spot tests, chloride	S	1,2,10

in water,	and lea	d in foo	d samples,	and ac	cquire skill
in organic	c prepara	ation.			

*Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Int erest (I) and Appreciation (Ap)

COURSE CONTENT

_

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
		Atomic Structure		
	1.1	Atomic spectrum of hydrogen atom, explanation using Bohr atom model, limitations of Bohr atom model.	4	1
	1.2	Dual nature of matter, de Broglie equation, Heisenberg's uncertainty principle and its significance.	2	1
1	1.3	Concept of orbit and orbital. Types of orbitals, shapes of s, p and d orbitals.	2	1
	1.4	Quantum numbers and their significance.	2	1
	1.5	Pauli's Exclusion Principle, Hund's rule of maximum multiplicity and Aufbau principle.	2	1
	1.6	Electronic configuration of atoms (upto atomic number 30). Stability of half-filled and completely filled electronic configurations.	3	1
		Fundamentals of Organic Chemistr	У	
2	2.1	Relevance of organic chemistry in day-to-day life (with 2-3 examples). Carbon: catenation and hybridizations (with examples ethane, ethene and ethyne).	3	2
	2.2	Arrow notations, bond fissions: curved arrow notation, drawing electron displacements with curved arrows, curved and fishhook arrows inorganic reaction mechanisms. Polarity of bonds (basic concepts only).	2	3, 4
	2.3	Homolysis and heterolysis with examples. Reactive intermediates: formation, structure and stability of carbocations, carbanions, and free radicals.	4	3, 4
	2.4	Electron displacement effects: inductive effect-influence of inductive effect in the acidity of carboxylic acids. Resonance effect (delocalization, contributing structures, and stability) -hyperconjugation	6	3, 4

		Elements, Molecules and Symmetry				
	3.1	Modern periodic law – long form periodic table. Classification of elements- s, p, d and f block, metal, non-metals and metalloids.	4	5		
	3.2	Effective nuclear charge –Slater rule and its applications	2	5		
	3.3	Valency and oxidation state with examples	1	5		
3	3.4	Introduction to molecules- types of bonds, ionic bond, covalent bond, coordinate bond	2	5		
	3.5	Symmetry elements and symmetry operations – Centre of symmetry, plane of symmetry, proper and improper axes of symmetry, identity, molecular point groups, Schoenflies symbol (determination of point groups not expected)	6	5		
	Foundation Course I Practical					
4	4.1	 Demonstration of atomic models using software(non-evaluative) Detection of sodium, potassium, calcium, barium and strontium ions through flame test. Spot test of nickel, zinc and copper. Chloride ion detection in well water and tap water. Detection of lead in food samples. Draw structures of simple organic molecules and resonance structures using chem-sketch /chemdraw. Preparation of 5-nitrosalicylic acid from salicylicacid. Preparation of <i>p</i>-nitroacetanilide 	30	6		
		from acetanilide.				
5		Teacher Specific Content				

Teaching	Lecture sessions, interactive sessions including discussions,
and	demonstrations, and experiments to engage students actively and visual
Learning	aids like presentations, videos, and models to enhance understanding.
Learning	Encourage students to ask questions during or after the lectures. Begin
Approach	with safety instructions and guidelines for lab work. Allow students to
	conduct experiments under supervision (for lab work).
	MODEOFASSESSMENT

Assessment Types	A. Continuous Comprehensive Assessment (CCA) Theory (25 Marks) i) Assignments: 5 marks ii) MCQ: 10 marks iii) Viva: 5 marks iv) Involvement in classroom activities: 5 marks Practical (15 Marks) i) Lab skill / analysis: 15 marks					
	B End Semester Examination					
	Theory (50 Marks- 1.5 Hrs)					
	i) MCQ 10 questions: $10 \times 1 = 10$					
	 ii) Short answer 4 questions (out of 6): 4 x 3 =12 iii) Short essay 4 questions (out of 6): 4 x 7 = 28 					
	Practical (35 Marks- 1 Hr)					
	i) Lab report: 10					
	ii) Viva: 15iii) Writing procedure: 10					

References

- 1. B. R. Puri, L. R. Sharma and K. C. Kalia, *Principles of Inorganic Chemistry*, Vikas Publishing Co. Jalandhar, 2013.
- 2. J. D. Lee, Concise Inorganic Chemistry, 5th Edn.Chapman & Hall, 2009.
- 3. P.W.Atkinsand J.de Paula, Physical *Chemistry*, 11th Edn. Oxford University Press, 2018.
- 4. R.TMorrison, R.N. Boydand S.K. Bhattacharjee *OrganicChemistry*, 7th Edn.Dorling Kindersley (India) Pvt. Ltd (Pearson Education), 2011.
- 5. T.W.GrahamSolomon, C. B. Fryhle, S.A.Snyder, *Organic Chemistry*, John Wiley & Sons, 2014.
- 6. A. Bahl, and B. S. Bahl, AdvancedOrganicChemistry, S.Chand, 2010.
- 7. F.A.Cotton, G.Wilkinson and P.L.Gaus, *Basic Inorganic Chemistry*, 3rd Edn. John Wiley, 2007.
- 8. D. F. Shriver and P.W.Atkins, *Inorganic Chemistry*, 4th Edn. Oxford University Press, 2006.
- 9. Vogels Textbook of Quantitative Chemical Analysis, 6th Edn. Pearson Education Ltd.
- 10. F. P.Miller, A. F. Vandome, Mc B.John, Flame Test, VDM Publishing, 2010.
- 11. S M. Basavarajaiah, G. Y. Nagesh, K. R. Reddy, *Compendious Practical Organic Chemistry: Preparations, Isolation and Chromatography*, Notion Press, 2021.

SUGGESTEDREADINGS

- 1. J.E. Huheey, E.A. Keitler and R.L.Keitler, *Inorganic Chemistry– Principles of Structure and Reactivity*, 4th Edn, Pearson Education, New Delhi, 2013.
- 2. J.Clayden, N.Greeves, S.Warren and P.Wothers, *Organic Chemistry*, 2ndEdn. Oxford University Press, 2012.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme						
Course Name	Building blocks of life: Atomic structure, Organic Chemistry and Proteins					
Type of Course	DSC B					
Course Code	MCE1DSCCH	E103				
Course Level	100-199					
Course Summary	This course covers the basic principles and concepts of atoms, elements, compounds; fundamentals of organic chemistry, amino acids, proteins and chromatography. Students explore atomic structure, electron displacements in organic chemistry, reactive intermediates, amino acids as building blocks of proteins and chromatographic separation techniques					
Semester	Ι		Credits		4	Total
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours
Details	Арргоаси	3		1		75
Pre- requisites, if any						

CO No.	Expected Course Outcome	Learning Domains *	PO No.				
Upon t	Upon the completion of the course, student will be able to:						
1	Apply atomic models to forecast and explain electronic configurations, atomic behaviour, and characteristics.	А	1,2				
2	Describe the relevance of organic chemistry, catenation and hybridisation.	U	1,2,10				
3	Evaluate electron displacement patterns in organic molecules using arrow notation.	E	1,2				
4	Utilize arrow-pushing mechanisms to illustrate and solve simple chemical reactions involving reactive intermediates.	А	1,2				
5	Understand the role of amino acids and proteins as building blocks of life	U	1,2,				
6	Apply chromatographic techniques for the separation of mixtures	А	1,2				
7	Identify metals through flame and spot tests, chloride in water, and lead in food samples, and acquire skill in separation techniques like chromatography	S	1,2,10				
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Units Course description					
		Atomic Structure and bonding					
	1.1	Atomic spectrum of hydrogen atom, explanation using Bohr atom model, limitations of Bohr atom model.	3	1			
	1.2	Dual nature of matter, de Broglie equation, Heisenberg's uncertainty principle and its significance.	2	1			
1	1.3	Concept of orbit and orbital. Types of orbitals, shapes of s, p and d orbitals.	1	1			
	1.4	Quantum numbers and their significance.	2	1			
	1.5	Pauli's Exclusion Principle, Hund's rule of maximum multiplicity and Aufbau principle.	2	1			
	1.6	Electronic configuration of atoms (upto atomic number 30). Stability of half-filled and completely filled electronic configurations.	2	1			
	1.7	Valency and oxidation state with examples	1	5			
	1.8	Introduction to molecules- types of bonds, ionic bond, covalent bond, coordinate bond	2	5			
	Fundamentals of Organic Chemistry						
	2.1	Relevance of organic chemistry in day-to-day life (with 2-3 examples). Carbon: catenation and hybridisations (with examples ethane, ethene and ethyne).	3	2			
2	2.2	Arrow notations, bond fissions: curved arrow notation, drawing electron displacements with curved arrows, curved and fishhook arrows in organic reaction mechanisms. Polarity of bonds (basic concepts only).	2	3, 4			
	2.3	Homolysis and heterolysis with examples. Reactive intermediates: formation, structure and stability of carbocations, carbanions, and free radicals.	4	3, 4			
	2.4	Electron displacement effects: inductive effect- influence of inductive effect in the acidity of carboxylic acids. Resonance effect (delocalization, contributing structures, and stability) - hyperconjugation	6	3, 4			
		Amino acids, proteins and chromatographic techn	iques				
3	3.1	Amino acids: Classification of amino acids; α , β and γ ; neutral, acidic and basic. Essential amino acids. General physical properties of amino acids, zwitter ion and isoelectric point.	3	5			

]
	3.2	Peptides – peptide Bond, dipeptides (eg. Aspartame), tripeptides (eg.Glutathione), polypeptides. Proteins- composition of proteins, classification of proteins Physical characteristics of proteins, denaturation of proteins	3	5
	3.3	Structure of proteins- primary, secondary, tertiary and quaternary structures (elementary idea only).	3	5
	3.4	Chromatography, adsorbent, adsorbate, eluent, elution Principle of differential migration.	3	6
	3.5	Basic principle and uses of Thin layer chromatography (TLC), Paper chromatography (PC), Rf value, Column chromatography. General Applications	3	6
		Foundation Course 1 Practical		
	evalua 2. Dete	ionstration of atomic models using software (non- tive) action of sodium, potassium, calcium, barium and um ions through flame test.		
	3. Spot	test of nickel, zinc and copper.		
4	4. Chlo	oride ion detection in well water and tap water.		
4	 5. Detection of lead in food samples. 6. Draw structures of simple organic molecules and resonance structures using chem-sketch / chemdraw. 7. Separate the different pigments in a mixture of inks using paper chromatography. Calculate their R_f Values 8. Separate and identify different food dyes from their R_f value using Thin Layer Chromatography 9. Separation of the Components of a mixture by decantation, extraction, filtration and sublimation techniques. 			7
		Teacher Specific Content		
5				

	Classroom Procedure (Mode of transaction)
Teaching and Learning Approach	 Lecture sessions Interactive sessions Discussions Demonstrations, and experiments to engage students actively Experiments Visual aids like presentations, videos, and models to enhance understanding Encourage students to ask questions during or after the lectures Begin with safety instructions and guidelines for lab work Allow students to conduct experiments under supervision
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory (25 Marks)

i) Assignments: 5 marks
ii) MCQ: 10 marks
iii) Viva: 5 marks
iv) Involvement in classroom activities: 5 marks
Practical (15 Marks)
i) Lab skill / analysis: 15 marks
B. End Semester Examination (ESE)
Theory (50 Marks- 1.5 Hrs)
i) MCQ 10 questions: $10 \ge 10$
ii) Short answer 4 questions (out of 6): $4 \times 3 = 12$
iii) Short essay 4 questions (out of 6): $4 \times 7 = 28$
Practical (35 Marks- 1 Hr)
i) Lab report: 10
ii) Viva: 15
iii) Writing procedure: 10

References

- 1. B. R. Puri, L. R. Sharma and K. C. Kalia, *Principles of Inorganic Chemistry*, Vikas Publishing Co. Jalandhar, 2013.
- 2. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn. Chapman & Hall, 2009.
- 3. P. W. Atkins and J. de Paula, *Physical Chemistry*, 11th Edn. Oxford University Press, 2018.
- 4. R.T Morrison, R.N. Boyd and S.K. Bhattacharjee *Organic Chemistry*, 7th Edn. Dorling Kindersley (India) Pvt. Ltd (Pearson Education), 2011.
- 5. T.W. Graham Solomon, C.B. Fryhle, S.A. Snyder, *Organic Chemistry*, John Wiley & Sons, 2014.
- 6. A. Bahl, and B.S. Bahl, Advanced Organic Chemistry, S. Chand, 2010.
- 7. I. L. Finar, Organic Chemistry Volume II, Pearson Education, 1956
- 8. K. S. Tewari, N. K. Vishnoi, A Text Book of Organic chemistry, 3rdEdn., Vikas publishing House Pvt. Ltd, 2006.
- 9. Vogels Textbook of Quantitative Chemical Analysis, 6th Edn. Pearson Education Ltd.
- 10. F. P. Miller, A. F. Vandome, McB. John, Flame Test, VDM Publishing, 2010.
- 11. S M. Basavarajaiah, G. Y. Nagesh, K. R. Reddy, *Compendious Practical Organic Chemistry: Preparations, Isolation, and Chromatography*, Notion Press, 2021.
- 12. T. Brown, C. Murphy, H. LeMay, Laboratory Experiments for Chemistry, Pearson, 2018.

Suggested readings

- 1. J.E. Huheey, E.A. Keitler and R.L. Keitler, *Inorganic Chemistry–Principles of Structure and Reactivity*, 4th Edn, Pearson Education, New Delhi, 2013.
- 2. J.Clayden, N.Greeves, S. Warren and P.Wothers, *Organic Chemistry*, 2nd Edn. Oxford University Press, 2012.

SEMESTER II

Real Providence	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B. Sc CHE	MISTRY(Hons.)			
Course Name	Fundament	tals of Che	emistry-2			
Type of Course	DSC A					
Course Code	MCE2DSC	MCE2DSCCHE100				
Course Level	100-199	100-199				
Course Summary		ctions in	organic cl	nderstanding of hemistry and tifications.		
Semester	II		Credits	8	4	T . 1
Course Details	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Total Hours
	Approach	3		1		75
Pre-requisites, if any		•	<u>.</u>		•	

CO No.	Expected Course Outcome	Learning Domains *	PO No.
Upon th	he completion of the course, student will be able to:		
1	Make use of fundamental principles of analytical chemistry to solve quantitative titrimetric problems.	А	1,2
2	Classify various types of organic reactions based on their mechanisms.	U	1,2
3	Describe the fundamental principles governing the behaviour of different states of matter.	U	1,2
4	Compare and contrast the properties of solids, liquids, and gases.	An	1,2
5	Apply the basic principles of analytical chemistry in preparation of standard solutions, acid-base titrations and in the determination of viscosity and surface tension.	S	1,2,10
	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E erest (I) and Appreciation (Ap)	E), Create (C)	, Skill

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
		Basic Concepts in Analytical Chemistry		1
	1.1	Molecular mass – mole concept. Oxidation and reduction (electron concept only)	2	1
1	1.2	Titrimetric analysis - fundamental concepts-analyte, end point, indicators etc. Methods of expressing concentration: Weight percentage, molality, molarity, normality, mole fraction, ppm and ppb. Primary and secondary standards, quantitative dilution – problems	6	1
	1.3	Acid base concepts Arrhenius definition, Bronsted- Lowry definition and conjugate acid-base pairs, Lewis concept, ionization of acids and bases.	2	1
	1.4	Acid base titrations- strong acid -strong base, strong acid – weak base, weak acid – strong base weak acid – weak base - pH indicators (phenolphthalein and methyl orange), redox titrations	5	1
		Introduction to Organic Reactions		
	2.1	Representation of organic molecules: projection formulae (Fischer, Sawhorse, Flying wedge and Newman)	3	2
	2.2	Types of reagents: electrophiles and nucleophiles	1	2
2	2.3	Addition reactions: Markovnikov's addition, peroxide effect. Elimination reactions: E1 and E2 mechanism. Substitution reactions (SN1, SN2 reactions of alkyl halides only).	8	2
	2.4	Polymers- Basic concepts. Addition polymerisation (polyethylene, PVC)	3	2
		States of matter		
3	3.1	Matter and its different states (elementary idea only), intermolecular forces: dipole-dipole interaction, dipole- induced dipole interaction and induced dipole-induced dipole interaction, ion-dipole interaction, hydrogen bonding: intra and intermolecular hydrogen bonds- effect on physical properties.	4	3,4
	3.2	Gaseous state: - postulates of kinetic theory, ideal and real gas behaviour, compressibility factor deviation from ideal behaviour, van der Waals equation (no derivation)	4	3,4
	3.3	Liquid state: properties of liquids: vapour pressure, boiling point, surface tension, viscosity.	3	3,4

	3.4 Solid state: types of solids: crystalline and amorphous solids: ionic solids: unit cell, crystal systems, Bravais lattices.	4	3,4
	Fundamentals of Chemistry-2 Practical		
4	 Calibration of apparatus -Standard flask and preparation of standard molar solutions of any two primary standards -Oxalic acid, Mohr's Salt, Na2CO3. Determination of pH of different water sources, common acids and bases using pH meter/pH strips Acid base titration- acidimetry and alkalimetry: titration of strong acid vs. strong base, strong acid vs. weak base and weak acid vs. strong base. Estimation of citric acid in citrus fruits. Determination of viscosity of liquids using Ostwald viscometer. Determination of surface tension of liquids using stalagmometer. 	30	5
5	Teacher Specific Content		

	Classroom Procedure (Mode of transaction)
Teaching and Learning Approach	 Lecture sessions Interactive sessions Discussions Demonstrations, and experiments to engage students actively Experiments Visual aids like presentations, videos, and models to enhance understanding Encourage students to ask questions during or after the lectures Begin with safety instructions and guidelines for lab work Allow students to conduct experiments under supervision Use of virtual lab to model chemical reactions
	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA)
Assessment Types	Theory (25 marks) i) Assignments: 5 marks ii) MCQ: 10 marks iii) Viva: 5 marks iv) Involvement in classroom activities: 5 Practical (15 marks) i) Lab involvement / Report/ Lab Test
	B. Semester End Examination Theory (50 marks- 1.5 Hrs)
	i) MCQ 10 questions: $10 \ge 10$

ii) Short answer 4 questions (out of 6): $4 \times 3 = 12$
iii) Short essay 4 questions (out of 6): $4 \ge 7 = 28$
Practical (35 marks – 1 Hr)
i) Lab report: 10
ii) Viva: 10
iii) Writing procedure: 15

References

- 1. D.A. Skoog, D.M. West, F.J. Holler and S.R. Crouch, *Fundamentals of Analytical Chemistry*, 8th Edn., Brooks/Cole, Thomson Learning, Inc., USA, 2004.
- 2. J. Mendham, R.C. Denney, J. D. Barnes and M. Thomas, *Vogel's Text Book of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 3. Vogels Textbook of Quantitative Chemical Analysis, 6th Edn. Pearson Education Ltd, 2009.
- 4. R.T. Morrison, R.N Boyd and S.K Bhattacharjee, *Organic Chemistry*, 7th Edn., Dorling Kindersley Pvt. Ltd (Pearson Education), 2011.38
- 5. T.W. Graham Solomon, C.B. Fryhle, S. A. Snyder, *Organic Chemistry*, John Wiley & Sons, 2014.
- 6. A. Bahl and B.S. Bahl, Advanced Organic Chemistry, S. Chand, 2010.
- 7. J.Clayden, N.Greeves, S. Warren, and P.Wothers, *Organic Chemistry*, Oxford University Press, 2004.
- 8. Puri, Sharma and Pathania, "*Principles of Physical Chemistry*", 47th Edn. Vishal Publishing Co, 2020.
- 9. P W Atkins, Physical Chemistry, 11th Edn. Oxford University Press, 2018.
- 10. K. L. Kapoor, A Textbook of Physical chemistry, Volume 1, Macmillan India Ltd, 2020.
- 11. J.B. Yadav, Advanced Practical Physical Chemistry, Krishna Prakashan, 2016.
- 12. K.K. Sharma, An Introduction of Practical Chemistry, Vikas Publishing House, New Delhi, 1984.

Real Provide August Aug	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme							
Course Name	Diary Chemi	istry					
Type of Course	MDC	MDC					
Course Code	MCE2MDC	MCE2MDCCHE100					
Course Level	100-199	100-199					
Course Summary	This course w processing m			nderstand vari	• 1		
Semester	II		Credits		3	Total	
Course Details	Learning Approach	LectureTutorialPractical/ Practicum21			Others	Hours 60	
Pre-requisites, if any		1	1	I			

CO No.	Expected Course Outcome	Learning Domains *	PO No.
Upon	the completion of the course, student will be able to:		
1	Evaluate the quality and nutritive value of milk by knowing the general chemical composition	Е	1, 2, 3, 6, 10
2	Describe the techniques of milk processing	U	1, 2, 3, 10
3	Compare different types of processed milk.	U	1, 2, 3, 6, 10
4	Classify various types of milk products based on their composition and processing methods	An	1, 3, 10
5	Demonstrate the preparation of various milk products	А	1, 2, 3, 4, 6, 10
	ember (K), Understand (U), Apply (A), Analyse (An), Evalua Iterest (I) and Appreciation (Ap)	te (E), Create	e (C), Skill

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs.	CO No.
		Composition and processing of Milk	I	I
	1.1	Milk- Definition, general composition of milk (cow, buffalo, goat and human) -water, protein, lactose and fat. Nutritive value of milk. Colostrum: significance, composition, difference between normal milk and colostrum.	6	1
1	1.2	Physico-chemical properties of milk- color, odour, density, acidity, germicidal properties, viscosity. Adulteration of milk and detection. Preservatives and neutralizers.	5	1
	1.3	Quality assurance – FSSAI, PFA, AGMARK.	1	1
	1.4	Importance of milk processing- filtration, clarification, boiling, homogenization and pasteurization. Types of pasteurization- LTLT and HTST.	3	2
_		Special milk and Milk products	1	1
2	2.1	Standardised milk - definition – merits. Homogenised milk, flavoured milk, vitaminised milk, toned milk, incitation milk, vegetable toned milk, condensed milk – definition, composition and nutritive value.	4	2
	2.2	Butter - definition -composition - theory of churning – desi butter, salted butter. Ghee - major constituents - common adulterants added to ghee and their detection - rancidity - definition – prevention. Cream- definition composition-chemistry of creaming process.	6	2
	2.3	Fermented milk products -fermentation of milk - definition and conditions. Yogurt and Curd (introduction and methods of production). Khoa and chana -definition and preparation - sweets – peda, burfi, gulab jamun, rasogolla. Milk powder - definition	5	4
		Dairy Chemistry Practicals		
3	milk ca 2. Dem 3. Deter	onstration of preparation of chana based products- paneer rmination of pH of milk ermination of moisture content in paneer by lab oven	30	5

4

Teacher	Specific	Content
I Caciner	Specific	Content

	Classroom Procedure (Mode of transaction)
	1. Lecture sessions
	2. Interactive sessions
	3. Discussions
Teaching	4. Demonstrations, and experiments to engage students actively
and	5. Experiments
Learning	6. Visual aids like presentations, videos, and models to enhance
Approach	understanding
	7. Encourage students to ask questions during or after the lectures
	8. Begin with safety instructions and guidelines for lab work
	9. Allow students to conduct experiments under supervision
	10. Preparation and exhibition of milk products
	11. Conduction of surveys
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
	Theory (15 marks)
	i) Assignments: 5 marks
	ii) MCQ: 5 marks
Assessment	iii) Viva: 5 marks
Types	Practical (15 marks)
- 5 - 5 - 5	i) Lab involvement / report/ Lab test
	B. End Semester Examination
	Theory (35 marks -45 min)
	i) MCQ 35 questions: $35 \times 1 = 35$
	Practical (35 marks -1 Hr)
	i) Lab report: 10
	ii) Viva: 10
	ii) Writing procedure: 15

- 1. R. Jenness and S. Patom, Principles of Dairy Chemistry, Wiley, 2017.
- 2. K.S.Rangappa and K.T Acharya., *Indian Dairy Products*, Asia Publishing House, 1975.
- 3. F.P. Wong., Fundamentals of Dairy Chemistry, Springer, 2012.
- 4. L.M. Lampert., Modern Dairy products, Chemical Publishing Company Inc., 1998.
- 5. J. N. Warner, Principles of Dairy Processing, Wiley, 1976.
- 6. Sukumar De, Outlines of Dairy technology, Oxford, 2001.
- 7. D, Richmond, Laboratory Manual of Dairy Analysis, Biotech Books, 2008.

Revisiant.	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme							
Course Name	Fundamentals of A	Analytical	l and Phyto	ochemistry			
Type of Course	DSC B						
Course Code	MCE2DSCCHE10)1					
Course Level	100-199						
Course Summary	This course provid chemistry. Naturally chemical investigat	y occurrin	g alkaloids	, terpenes a		U	
Semester	II	Credits			4	Total	
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours	
Course Details		3		1		75	
Pre-requisites, if any					•		

Expected Course Outcome	Learning Domains*	PO No
Make use of fundamental principles of analytical chemistry to solve quantitative titrimetric problems.	А	1,2
Classify various types of organic reactions based on their mechanisms.	U	1,2
Apply the knowledge of chemical constituents present in plants in daily life.	А	1,2
Compare/Analyze the different analytical techniques involved in isolation of natural products.	An	1,2
Apply the basic principles of analytical chemistry in preparation of standard solutions, acid-base titrations and in the determination of viscosity and surface tension.	S	1, 2, 10
-	Make use of fundamental principles of analytical chemistry to solve quantitative titrimetric problems.Classify various types of organic reactions based on their mechanisms.Apply the knowledge of chemical constituents present in plants in daily life.Compare/Analyze the different analytical techniques involved in isolation of natural products.Apply the basic principles of analytical chemistry in preparation of standard solutions, acid-base titrations and in the determination of viscosity and surface	Domains*Make use of fundamental principles of analytical chemistry to solve quantitative titrimetric problems.AClassify various types of organic reactions based on their mechanisms.UApply the knowledge of chemical constituents present in plants in daily life.ACompare/Analyze the different analytical techniques involved in isolation of natural products.AnApply the basic principles of analytical chemistry in preparation of standard solutions, acid-base titrations and in the determination of viscosity and surfaceS

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
		Basic Concepts in Analytical Chemistry		
	1.1	Molecular mass - mole concept. Oxidation and reduction (electron concept only)	2	1
1	1.2	Titrimetric analysis - fundamental concepts-analyte, end point, indicators etc. Methods of expressing concentration: Weight percentage, molality, molarity, normality, mole fraction, ppm and ppb. Primary and secondary standards, quantitative dilution – problems	6	1
	1.3	Acid base concepts Arrhenius definition, Bronsted- Lowry definition and conjugate acid-base pairs, Lewis concept, ionization of acids and bases.	2	1
	1.4	Acid base titrations- strong acid -strong base, strong acid – weak base, weak acid – strong base weak acid – weak base - pH indicators (phenolphthalein and methyl orange), redox titrations	5	1
		Introduction to Organic Reactions		
	2.1	Representation of organic molecules: projection formulae (Fischer, Sawhorse, Flying wedge and Newman)	3	2
	2.2	Types of reagents: electrophiles and nucleophiles	1	2
2	2.3	Addition reactions: Markovnikov's addition, peroxide effect. Elimination reactions: E1 and E2 mechanism. Substitution reactions (SN1, SN2 reactions of alkyl halides only).	8	2
	2.4	Polymers- Basic concepts. Addition polymerisation (polyethylene, PVC)	3	2
		Natural products and Phytochemistry		
		Alkaloids: Definition, classification, Chemical formulae, structure, source and uses of some commonly used alkaloids		
3	3.1	(Morphine, Strychnine, Quinine, Ephedrine and Nicotine).	4	3, 4
	3.2	Terpenes: Isoprene Rule, Classification of terpenes, Chemical formulae, structure, source and uses of some common terpenes.(Citral, Vitamin A, Beta Carotene, Lycopene, Natural Rubber)	5	3,4
		General methods for the extraction of natural products. Maceration, percolation, Soxhlet extraction. Isolation		
	3.3	and identification of natural product- Fractional		3, 4

	crystallisation, Fractional distillation, Sublimation, Chromatography-Column chromatography, Paper chromatography, Thin layer chromatography and HPLC.		
4	 Fundamentals of Chemistry-2 Practical Calibration of apparatus -Standard flask and preparation of standard molar solutions of any two primary standards-Oxalic acid, Mohr's Salt, Na2CO3. Determination of pH of different water sources, common acids and bases using pH meter/pH strips Acid base titration- acidimetry and alkalimetry: titration of strong acid vs. strong base, strong acid vs. weak base and weak acid vs. strong base. Estimation of citric acid in citrus fruits. Determination of viscosity of liquids using Ostwald viscometer. Purification of solid by sublimation method. 	30	5
	Teacher Specific content		
5			

Teaching and Learning Approach	Classroom procedure (mode of transaction) Lecture sessions, interactive sessions including discussions, demonstrations, and experiments to engage students actively and visual aids like presentations, videos, and models to enhance understanding, encourage students to ask questions during or after the lectures, begin with safety instructions and guidelines for lab work. Allow students to conduct experiments under supervision (for lab work).						
MODE OF ASSESSMENTA. Continuous Comprehensive Assessment (CCA)Theory (25 Marks)i) Assignments: 5 marksii) MCQ: 10 marksiii) Viva: 5 marksiv) Involvement in classroom activities: 5 marksPractical (15 Marks)i) Lab skill / analysis: 15 marks							
	 B. End Semester Examination (ESE) Theory (50 Marks- 1.5 Hrs) MCQ 10 questions: 10 x 1 = 10 Short answer 4 questions (out of 6): 4 x 3 =12 Short essay 4 questions (out of 6): 4 x 7 = 28 Practical (35 Marks- 1 Hr) Lab report: 10 Viva: 15 Writing procedure: 10 						

1. D.A. Skoog, D.M. West, F.J. Holler and S.R. Crouch, *Fundamentals of Analytical Chemistry*, 8thEdn., Brooks/Cole, Thomson Learning, Inc., USA, 2004.

2. J. Mendham, R.C. Denney, J. D. Barnes and M. Thomas, *Vogel's Text Book of Quantitative Chemical Analysis*, 6thEdn., Pearson Education, Noida, 2013.

3. Vogels Textbook of Quantitative Chemical Analysis, 6thEdn. Pearson Education Ltd, 2009.

4. R.T. Morrison, R.N Boyd and S.K Bhattacharjee, *Organic Chemistry*, 7thEdn., Dorling Kindersley Pvt. Ltd (Pearson Education), 2011.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme						
Course Name	Underlying Princip	les of the	Macrowor	ld		
Type of Course	DSC B					
Course Code	MCE2DSCCHE102	2				
Course Level	100-199					
Course Summary	This course provide matter, reactions in c investigations and id	organic che	emistry and	e	1.0	
Semester	II		Credits		4	Total
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours
Details		3		1		75
Pre-requisites, if any		1	1	1	1	

CO No.	Expected Course Outcome	Learning Domains*	PO No.				
Upon t	Upon the completion of the course, students will be able to:						
1	Make use of fundamental principles of analytical chemistry to solve quantitative titrimetric problems.	А	1,2				
2	Studying the concepts of equilibrium and thermodynamics enables the students to examine the properties of bulk matter.	U	1,2				
3	Describe the fundamental principles governing the behaviour of different states of matter.	U	1,2				
4	Compare and contrast the properties of solids, liquids, and gases.	An	1,2				
5	Apply the basic principles of analytical chemistry in the preparation of standard solutions, acid-base titrations, and	S	1, 2, 10				

determining viscosity and surface tension.	

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.				
		Basic Concepts in Analytical Chemistry						
	1.1	Molecular mass – moleconcept. Oxidation and reduction (electron concept only)	2	1				
1	1.2	Titrimetric analysis - fundamental concepts- analyte, end point, indicators etc. Methods of expressingconcentration: Weight percentage,molality,molarity, normality, mole fraction, ppm and ppb.Primary and secondary standards, quantitative dilution – problems	6	1				
	1.3	Acid base concepts Arrhenius definition, Bronsted- Lowry definition and conjugate acid-base pairs, Lewis concept, ionization of acids and bases.	2	1				
	1.4	Acid base titrations- strong acid -strong base, strong acid – weak base, weak acid – strong base weak acid – weak base - pH indicators (phenolphthalein and methyl orange), redox titrations	5	1				
	Laws of Thermodynamics							
	2.1	System and Surroundings. First law of thermodynamics: Internal energy, Significance of internal energy change, enthalpy	3	2				
2	2.2	Second law of thermodynamics: Free energy, Entropy, and spontaneity, Statement of second law based on entropy, Entropy change in phase transitions (No derivation required)-entropy of fusion, entropy of vaporization, entropy of sublimation.	4	2				
	2.3	The concept of Gibbs's free energy- Physical significance of free energy, conditions for equilibrium & spontaneity based on ΔG values. Effect of temperature on the spontaneity of reaction. Third law of thermodynamics.	5	2				
	2.4	Introduction to metabolism- catabolism, anabolism, Carbohydrate metabolism-introduction, aerobic and	3	2				

		anaerobic pathways, glycolysis and its pathways. (Elementary ideas only)						
	States of Matter							
	3.1	Matter and its different states (elementary idea only), intermolecular forces: dipole-dipole interaction, dipole-induced dipole interaction and induced dipole- induced dipole interaction, ion-dipole interaction, hydrogen bonding: intra and intermolecular hydrogen bonds- effect on physical properties.	4	3, 4				
3	3.2	Gaseous state: - postulates of kinetic theory, ideal and real gas behaviour, compressibility factor deviation from ideal behaviour, van der Waals equation (no derivation)	4	3, 4				
	3.3	Liquid state: properties of liquids: vapour pressure, boiling point, surface tension, viscosity.	3	3, 4				
	3.4	Solid state: types of solids: crystalline and amorphous solids: ionic solids: unit cell, crystal systems, Bravais lattices.	4	3, 4				
	Underlying Principles of the Macroworld Practical							
4	star Ox 2. De aci 3. Ac stro we 4. Est 5. De vis 6. De	libration of apparatus -Standard flask and preparation of ndard molar solutions of any two primary standards- alic acid, Mohr's Salt, Na ₂ CO ₃ . termination of pH of different water sources, common ds and bases using pH meter/pH strips id base titration- acidimetry and alkalimetry: titration of ong acid vs. strong base, strong acid vs. weak base and ak acid vs. strong base. imation of citric acid in citrus fruits. termination of viscosity of liquids using Ostwald cometer. termination of surface tension of liquids using lagmometer.	30	5				
5		Teacher Specific Content						
-								

	Classroom Procedure (Mode of transaction)			
	1. Lecture sessions			
	2. Interactive sessions			
	3. Discussions			
Teaching and	4. Demonstrations, and experiments to engage students actively			
Learning	5. Experiments			
Approach	6. Visual aids like presentations, videos, and models to enhance			
	understanding			
	7. Encourage students to ask questions during or after the lectures			
	8. Begin with safety instructions and guidelines for lab work			
	9. Allow students to conduct experiments under supervision			
	10. Use of virtual lab to model chemical reactions			
	MODE OF ASSESSMENT			
	A. Continuous Comprehensive Assessment (CCA)			
	Theory (25 Marks)			
	i) Assignments: 5 marks			
	ii) MCQ: 10 marks			
	iii) Viva: 5 marks			
	iv) Involvement in classroom activities: 5 marks			
Assessment	Practical (15 Marks)			
Types	i) Lab skill / analysis: 15 marks			
-51-52	B. End Semester Examination (ESE)			
	Theory (50 Marks- 1.5 Hrs.)			
	i) MCQ 10 questions: $10 \times 1 = 10$			
	ii) Short answer 4 questions (out of 6): $4 \times 3 = 12$			
	iii) Short essay 4 questions (out of 6): $4 \ge 7 = 28$			
	Practical (35 Marks- 1 Hr)			
	i) Lab report: 10			
	ii) Viva: 15 iii) Writing group dure: 10			
References	iii) Writing procedure: 10			

- 1. D.A. Skoog, D.M. West, F.J. Holler and S.R. Crouch, *Fundamentals of Analytical Chemistry*, 8thEdn., Brooks/Cole, Thomson Learning, Inc., USA, 2004.
- 2. J. Mendham, R.C. Denney, J. D. Barnes and M. Thomas, *Vogel's Text Book of Quantitative Chemical Analysis*, 6thEdn., Pearson Education, Noida, 2013.
- 3. *VogelsTextbook of Quantitative Chemical Analysis*, 6thEdn. Pearson Education Ltd, 2009.
- 4. Rajaram and Kuriakkose, *Thermodynamics*, East-West, 1986.
- 5. Rastogi, RD, *Introduction to Chemical Thermodynamics*, 6th Edn, Vikas Publishing House, Pvt. Ltd., 2002.
- 6. Puri, Sharma and Pathania, "Principles of Physical Chemistry", 47thEdn. Vishal Publishing Co, 2020.
- 7. P W Atkins, *Physical Chemistry*, 11thEdn. Oxford University Press, 2018.
- 8. K. L. Kapoor, *A Textbook of Physical chemistry*, Volume 1, Macmillan India Ltd, 2020.
- 9. J.B. Yadav, Advanced Practical Physical Chemistry, Krishna Prakashan, 2016.
- 10. K.K. Sharma, An Introduction of Practical Chemistry, Vikas Publishing House, New Delhi, 1984.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme							
Course Name	Unravelling Analytical techniques, Organic reactions and Biomolecules						
Type of Course	DSC B						
Course Code	MCE2DSCC	CHE103					
Course Level	100-199	100-199					
Course Summary	This course provides basic understanding of fundamental organic chemistry reactions; the functions of enzymes, nucleic acids, and hormones in the human body; and the analytical tools for chemical investigations and identifications.						
Semester	II		Credits		4	T - 4 - 1	
Course Details	Learning Lecture Tutorial		Tutorial	Practical/ Practicum	Others	Total Hours	
	Approach	3		1		75	
Pre-requisites, if any							

CO No.	Expected Course Outcome	Learning Domains *	PO No.		
Upon t	he completion of the course, student will be able to:				
1	Make use of fundamental principles of analytical chemistry to solve quantitative titrimetric problems.	А	1, 2		
2	Classify various types of organic reactions based on their mechanisms.	U	1, 2		
3	Understand the basic structures and functions of energy rich molecules (ATP, ADP and AMP), nucleic acids and hormones	U	1, 2		
4	Describe and analyse the basic nature and classification of enzyme, and mechanism of enzyme action	An	1, 2		
5	Apply the basic principles of analytical chemistry in preparation of standard solutions and acid-base titrations; and acquire skill inorganic preparation.	S	1, 2, 10		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Hrs	CO No.	
		Basic Concepts in Analytical Chemistry	L	
	1.1	Molecular mass – mole concept. Oxidation and reduction (electron concept only)	2	1
1	1.2	Titrimetric analysis - fundamental concepts- analyte, end point, indicators etc. Methods of expressing concentration: Weight percentage, molality, molarity, normality, mole fraction, ppm and ppb. Primary and secondary standards, quantitative dilution – problems	6	1
	1.3	Acid base concepts Arrhenius definition, Bronsted- Lowry definition and conjugate acid-base pairs, Lewis concept, ionization of acids and bases.	2	1
	1.4	Acid base titrations- strong acid -strong base, strong acid – weak base, weak acid –strong base weak acid- weak base - pH indicators (phenolphthalein and methyl orange), redox titrations	5	1
		Introduction to Organic Reactions		
	2.1	Representation of organic molecules: projection formulae (Fischer, Sawhorse, Flying wedge and Newman)	3	2
	2.2	Types of reagents: electrophiles and nucleophiles	1	2
2	2.3	Addition reactions: Markovnikov's addition, peroxide effect. Elimination reactions: E_1 and E_2 mechanism. Substitution reactions (SN ¹ , SN ² reactions of alkyl halides only).	8	2
	2.4	Polymers- Basic concepts. Addition polymerisation (polyethylene, PVC)	3	2
		Enzymes, Nucleic acids and Hormones		
	3.1	Enzymes – General nature, classification, cofactors coenzyme, characteristics of enzyme action, mechanism of enzyme action-the lock and key model and the induced fit model, enzyme inhibitors, usefulness and applications of enzymes.	5	4
3	3.2	Energy rich molecules: elementary structure of ATP, ADP and AMP, energy release by ATP and ADP (structures not required).	3	3
	3.3	Nucleic acids- Chemical composition, nucleosides, nucleotides (structures not required). Structure of DNA & RNA (mention only different types of bases and sugars, no structures are required).	4	3
	3.4	Hormones - Introduction, steroid hormones-sex hormones and adrenal cortex hormones, peptide hormones-insulin, oxytocin, vasopressin and angio tensin II.	3	3
4		Fundamentals of Biochemistry-2 Practical		

	 Calibration of apparatus -Standard flask and preparation of standard molar solutions of any two primary standards- oxalic acid, Mohr's salt, Na₂CO₃. Determination of pH of different water sources, common acids and bases using pH meter/pH strips Acid base titration- acidimetry and alkalimetry: titration of strong acid vs. strong base, strong acid vs. weak base and weak acid vs. strong base. Estimation of citric acid in citrus fruits. Preparation of 5-nitrosalicylic acid from salicylic acid. Preparation of <i>p</i>-nitroacetanilide from acetanilide. 	30	5
5	Teacher Specific Content		

	Classroom Procedure (Mode of transaction)
	1.Lecture sessions
	2. Interactive sessions
	3.Discussions
Teaching and	4.Demonstrations, and experiments to engage students actively
Learning	5.Experiments
Approach	6. Visual aids like presentations, videos, and models to enhance
	understanding
	7.Encourage students to ask questions during or after the lectures 8.Begin with safety instructions and guidelines for lab work
	9.Allow students to conduct experiments under supervision
	10. Use of virtual lab to model chemical reactions
	10. Ose of virtual lab to model chemical reactions
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
	Theory (25 Marks)
	i) Assignments: 5 marks
	ii) MCQ: 10 marks
	iii) Viva: 5 marks
	iv) Involvement in classroom activities: 5 marks
Assessment	Practical (15 Marks)
Types	i) Lab skill / analysis: 15 marks
- 5 P * 5	B. End Semester Examination (ESE)
	Theory (50 Marks- 1.5 Hrs)
	i) MCQ 10 questions: $10 \times 1 = 10$ ii) Short argument 4 questions (such of C): $4 \times 2 = 12$
	ii) Short answer 4 questions (out of 6): $4 \times 3 = 12$
	iii) Short essay 4 questions (out of 6): $4 \ge 7 = 28$ Practical (35 Marks- 1 Hr)
	i) Lab report: 10
	i) Viva: 15
	iii)Writing procedure: 10

- 1. D.A. Skoog, D.M. West, F.J. Holler and S.R. Crouch, *Fundamentals of Analytical Chemistry*, 8th Edn., Brooks/Cole, Thomson Learning, Inc., USA, 2004.
- 2. J. Mendham, R.C. Denney, J. D. Barnes and M. Thomas, *Vogel's Text Book of Quantitative Chemical Analysis*, 6th Edn., Pearson Education, Noida, 2013.
- 3. *VogelsTextbook of Quantitative Chemical Analysis*, 6th Edn. Pearson Education Ltd, 2009.
- 4. R.T. Morrison, R.N Boyd and S.K Bhattacharjee, *Organic Chemistry*, 7th Edn., Dorling Kindersley Pvt. Ltd (Pearson Education), 2011.38
- 5. T.W. Graham Solomon, C.B. Fryhle, S. A. Snyder, *Organic Chemistry*, John Wiley & Sons, 2014.
- 6. A. Bahl and B.S. Bahl, Advanced Organic Chemistry, S. Chand, 2010.
- 7. J.Clayden, N.Greeves, S. Warren, and P.Wothers, *Organic Chemistry*, Oxford University Press, 2004.
- 8. I. L. Finar, Organic Chemistry Volume II, Pearson Education, 1956.
- 9. K. S. Tewari, N. K. Vishnoi, A Text Book of Organic chemistry, 3rdEdn., Vikas publishing House Pvt. Ltd, 2006.
- 10. Rastogi, Biochemistry, Tata McGraw Hill Publication, 1996.
- 11. D. Voet, J. G. Voet, Biochemistry, 4thEdn., John Wiley and Sons, 2010.
- 12. K.K. Sharma, *An Introduction of Practical Chemistry*, Vikas Publishing House, New Delhi, 1984.

SEMESTER III

Receiption of the second	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B. Sc CHEMIST	RY (Hons.)				
Course Name	Inorganic Chemi	stry-1				
Type of Course	DSC A					
Course Code	MCE3DSCCHE200					
Course Level	200-299					
Course	This course addre	esses bondir	ng concepts	in molecul	es, chemis	try of p,
Summary	f and d block ele	ments and o	discusses the	e fundament	tals of coor	dination
	chemistry. The practical component includes preparation of complexes					
	and complexometr	ric titrations				
Semester	III		Credits		4	Total
Course Details	Learning approach	Lecture	Tutorial	Practical	Others	Hours
		3		1		75
Pre-requisites,						
if any						

CO	Expected Course Outcome	Learning	PO No.			
No.		Domains *				
1	Apply the bonding concepts to molecules.	А	1, 2, 10			
2	Compare the physical and chemical properties of lanthanides and actinides.	An	1, 2			
3	Explain different nuclear reactions.	U	1, 2			
4	Differentiate the theories of coordination complexes of d- block elements.	An	1, 2			
5	Apply the knowledge for estimation of Zn, Ca and Mg using complexometric titrations and complex preparations.	A, S	1, 2, 10			
Reme	Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

_

Module	Units	Course description	Hrs.	CO No.
		Chemical Bonding	I	
	1.1	Properties of ionic compounds, lattice energy of ionic compounds - Born- Lande equation with derivation - solvation enthalpy and solubility of ionic compounds – Born-Haber cycle and its applications.	3	1
	1.2	Polarisation of ions – Fajan's rule and its applications.	2	1
1	1.3	Covalent Bond: VSEPR theory- Postulates and applications Valence Bond Theory and its limitations. Hybridization: definition, characteristics, and shape of molecules (BeCl ₂ , BF ₃ , NH ₄ ⁺ , H ₃ O ⁺ , PCl ₅ , SF ₆ , XeF ₂ , XeF ₄ , XeOF ₂ , XeOF ₄ , and XeF ₆).	5	1
	1.4	Properties of covalent compounds - polarity of bonds – percentage of ionic character – dipole moment and molecular structure.	2	1
	1.5	Molecular Orbital Theory: LCAO - bonding and antibonding molecular orbitals – bond order and its significance. MO diagrams of homonuclear and heteronuclear diatomic molecules: N ₂ , O ₂ , F ₂ , CO and NO – comparison of bond length, magnetic behaviour and bond energy of O ₂ , O ₂ ⁺ , O ₂ ⁻²⁺ , O ₂ ⁻ and O ₂ ²⁻	3	1
		Chemistry of f-block elements and radioactivity	[
	2.1	Lanthanides: lanthanide series, abundance and natural isotopes, separation of lanthanides, lanthanide contraction, similarity in properties, occurrence, oxidation states, chemical properties of Ln(III) cations, magnetic properties, colour and electronic spectra of	6	2
2	2.2	Chemistry of actinides – actinide series, abundance and natural isotopes, occurrence, preparation of actinides, oxidation states, general properties.	2	2
	2.3	Radioactivity – natural and artificial radioactivity; types of radioactive decay, Group displacement law, rate of disintegration - half life, nuclear fission and nuclear fusion reaction, chain reactions.	4	3
	2.4	Applications of radioactive decay: carbon dating, and nuclear medicine. Nuclear pollution and hazards.	3	3
		d-block elements and coordination compounds		

	3.1	Transition Metals: General characteristics.	2	4
	3.2	Werner's theory, types of ligands, coordination number, oxidation state. Geometry of complexes with coordination numbers 4 and 6.	2	4
3	3.3	Stability of complexes: factors affecting the stability of metal complexes. Chelates, chelate effect. Theory of complexometric titrations.	2	4
	3.4	Isomerism in coordination compounds – structural isomerism and stereoisomerism (complexes with 4 and 6 coordination numbers).	2	4
	3.5	Valence bond theory, geometries of tetrahedral, square planar and octahedral (inner and outer orbital) complexes. Limitations of VB theory.	3	4
	3.6	Crystal field theory, splitting of d-orbitals in octahedral, tetrahedral, and square-planar complexes-introduction to Mulliken symbol, low spin and high spin complexes. Spectrochemical series-strong and weak field ligands, CFSE, pairing energy.	4	4
		Inorganic Chemistry-1 Practical		
	4.1	Identify salts visually – Cobalt chloride, copper chloride, copper sulphate, ferrous sulphate, ferric chloride, potassium dichromate and nickel chloride.	2	5
4	4.2	Preparation of simple coordination complexes such as hexaaquacobalt (II), hexaaquacopper (II), hexaaquanickel (II) ions and prussian blue.	8	5
	4.3	Complexometric titration using EDTA Estimation of Ca, Mg and Zn Determination of hardness of water	10	5
	4.4	Permanganometry1. Estimation of Fe2+2. Estimation of oxalic acid3. Estimation of calcium	10	5
5		Teacher Specific content		
5				
Classroom procedure (mode of transaction)Teaching and Learning ApproachLecture (chalk & board, PowerPoint presentation)Group discussionPeer teaching • Demonstration of experiments				
		Hands-on training		

	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment
	Theory (25 marks)
	i) Assignment /Viva /Class test
	Practical (15 marks)
	i) Lab involvement / Viva
	B. End Semester Examination
Assessment	Theory: Written examination (50 Marks-1.5 hrs.)
Types	i) MCQ 10 questions: $10 \text{ x1} = 10$
	ii) Short answer 4 questions (out of 6): 4 x 3 =12
	iii) Short essay 2 questions (out of 3): $2 \ge 7 = 14$
	iv) Essay 1 question (out of 2): $1 \times 14 = 14$
	Practical: (35 marks)- 1 hr.
	i) Certified report- 10 Marks
	ii) Procedure - 15 Marks
	iii)Viva voce- 10 Marks

- 1. J. D. Lee, Concise Inorganic Chemistry, 5th Edn., Blackwell Science, London, 2008
- 2. B. R. Puri, L. R. Sharma and Kalia, *Principles of Inorganic Chemistry*, Milestone Publishers, New Delhi, 2020
- 3. F.A. Cotton, G. Wilkinson and P.L. Gaus, *Basic Inorganic Chemistry*, 3rd Edn., John Wiley, 2007
- 4. B. Douglas, D. Mc Daniel and J. Alexander, *Concepts and models in Inorganic Chemistry*, 3rd Edn Wiely,2006
- 5. J.E. Huheey, E.A. Keiter, R.L. Keiter and O.K. Medhi, *Inorganic Chemistry Principles of Structure and Reactivity*, 5th Edn. Pearson Education, 2022.
- 6. H.J. Arnikar, *Essentials of Nuclear Chemistry*, 4th Edn. New Age International Private Limited, 2011.
- 7. S.N. Goshal, *Nuclear Physics*, S. Chand and Company, 2006.
- 8. Vogel's *Textbook of Quantitative Chemical Analysis*, 5th Edition, Longman Scientific and Technical, Harlow, 582.
- 9. D. A. Skoog, D. M. West, and S. R. Crouch, *Fundamentals of Analytical Chemistry*, 8th Edn., Brooks/Cole Nelson, 2004

Suggested Readings

- 1. N.N. Greenwood and A. Earnshaw, *Chemistry of the Elements*, Butterworth-Heinemann, 2012.
- 2. G.L. Miessler, and A. Tarr, Donald Inorganic Chemistry 3rd Edn.(adapted), Pearson, 2009
- 3. C. E. Housecroft, A.G. Sharpe and C. E. Barnes, *Inorganic Chemistry* 4th Edn. Journal of Chemical Education, 2003.

Real Provide August Aug	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B. Sc CHEMISTRY (H	lons.)				
Course Name	Organic Chemistry-1					
Type of Course	DSC A					
Course Code	MCE3DSCCHE201					
Course Level	200-299					
	This course explores th	e chemical	l principles	underlie al	kanes, a	lkenes,
Course	alkynes, and aromatic c	compounds	. Additiona	lly, it cove	rs funda	mental
Summary	stereochemistry concept	s. The prac	tical segme	ent of the co	urse foci	uses on
	some methods used in o	rganic qua	litative anal	ysis.		
Semester	III		Credits		4	Total
Course Details	Learning approach	Lecture	Tutorial	Practical	Others	Hours
		3		1		75
Pre-requisites, if any		1	1			

Expected Course Outcome	Learning	PO No.
	Domains *	
Distinguish between aliphatic, aromatic, and non- aromatic compounds.	An	1,2
Deduce the logical mechanism of reactions of aliphatic and aromatic compounds.	E	1, 2, 10
Outline industrial uses of aliphatic compounds.	U	1, 2
Assign R, S, E and Z notation to compounds.	А	1, 2, 10
Compare stabilities of conformations of organic molecules.	An	1, 2
Determine aromatic/aliphatic, saturated/unsaturated character and physical constants of organic compounds by microscale analysis and systematically record the	An, S	1, 2, 4, 6, 10
	 Distinguish between aliphatic, aromatic, and non-aromatic compounds. Deduce the logical mechanism of reactions of aliphatic and aromatic compounds. Outline industrial uses of aliphatic compounds. Outline industrial uses of aliphatic compounds. Compare stabilities of conformations of organic molecules. Determine aromatic/aliphatic, saturated/unsaturated character and physical constants of organic compounds 	Distinguish between aliphatic, aromatic, and non- aromatic compounds.Domains *Deduce the logical mechanism of reactions of aliphatic and aromatic compounds.EOutline industrial uses of aliphatic compounds.UAssign R, S, E and Z notation to compounds.ACompare stabilities of conformations of organic molecules.AnDetermine aromatic/aliphatic, saturated/unsaturated character and physical constants of organic compounds by microscale analysis and systematically record theAn

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Content for	Classroom	transaction	(Units)
--------------------	-----------	-------------	---------

Module	Units	Course description	Hrs.	CO No.			
		Alkane, Alkenes and Alkynes					
	1.1	Alkanes: physical properties, industrial use -LPG and petrol, preparation-Wurtz reaction. Reactions- Free radical substitutions (chlorination) with mechanism and cracking.	3	1, 2			
1	1.2	Alkenes: physical properties, industrial uses of ethylene, preparation- Saytzeff and Hofmann eliminations, reactions- hydrogenation, hydration, hydrohalogenation, Markovnikov's rule, Kharasch effect, ozonolysis, dihydroxylation using KMnO4 and bromination (with	7	1			
	1.3	Alkynes: physical properties, industrial uses of acetylene, preparation of acetylenes- dehydrohalogenation of vicinal dihalides, reactions- acidity of alkynes, formation of metal acetylides, alkylation of terminal alkynes and conversion into higher alkynes, addition of water, bromine and alkaline KMnO4, reduction using Lindlar's catalyst	5	1			
	Aromatic compounds						
	2.1	Aromaticity: Definition, Hückel's rule, benzenoid aromatic compounds-benzene, naphthalene, anthracene; non- benzenoid aromatic compounds- cyclopropenyl cation, cyclopentadienyl anion, tropylium cation, heterocyclic aromatic compounds (pyridine, pyrrole and furan). Non- aromatic and antiaromatic compounds	6	3			
2	2.2	Benzene: molecular orbital picture, resonance energy, reactions - electrophilic aromatic substitution - nitration, halogenation, Friedel- Craft's reactions with their mechanisms.	4	1,6			
	2.3	Ring activating and deactivating groups with examples. Orientation of aromatic substitution- ortho, para and meta directing effects of groups.	3	1			
	2.4	Aromatic nucleophilic substitutions of halobenzenes – bimolecular displacement mechanism, elimination-addition (benzyne intermediate) mechanism.	2	1			
		Basic Stereochemistry	-				
3	3.1	Stereoisomerism: definition, classification, configuration and conformation, interconversion of wedge formula, Newman, Sawhorse and Fischer projection formulae	1	4			

5				
		Teacher Specific Content		
4	4.2	Determination of physical constants-melting point, boiling point, specific rotation (Polarimetry)	15	6
	4.1	Microscale organic analysis- test for aromatic character- ignition test, nitration test, picrate test and tests for unsaturation.	15	6
		Organic Chemistry-1 Practical		
	3.5	Conformations: conformational analysis with respect to ethane, butane, cyclohexane. Relative stability and energy diagrams.	2	5
	3.4	Relative and absolute configuration: D and L, three and erythro; d and l designations; CIP rules: R/S notation (up to 2 chiral carbon atoms).	3	4
	3.3	Optical isomerism: optical activity, specific rotation, concept of chirality, stereogenic centres, enantiomerism, diastereomerism and meso compounds, optical isomers of lactic acid and tartaric acid, racemic mixture and resolution.	5	4
	3.2	Geometrical isomerism: Cis–trans and E/Z nomenclature (upto two C=C systems) with Cahn Ingold Prelog (CIP) rules. Methods of distinguishing geometrical isomers.	4	4

	Classroom procedure (mode of transaction)
Teaching and	Classroom lecture
Learning	Hands on training using models
Approach	Demonstration and practical training in laboratory
	Use of molecular visualisation software
	Industrial Visit

	MODE OF ASSESSMEN T					
	A. Continuous Comprehensive Assessment (CCA)					
	Theory (25 marks)					
	i) Pop quiz/ Assigning R and S using molecular models/open book					
Assessment	ii) Written tests					
Types	Practical (15 marks)					
Types	i) Quiz					
	ii) Lab involvement					
	B. End Semester Examination					
	Written examination - 50 Marks- 1.5 hrs.					
	i) MCQ 10 questions: $10 \ge 10$					
	ii) Short answer 4 questions (out of 6): $4 \times 3 = 12$					
	iii) Short essay 2 questions (out of 3): $2 \ge 7 = 14$					
	iv) Essay 1 question (out of 2): $1 \times 14 = 14$					
	Practical (35 Marks)- 1 hr.					
	i) Viva voce-10 Marks					
	ii) Written test of practical procedures-15 Marks					
	iii) Certified report of lab works done -10 Marks					

- 1. Morrison, R. T.; Boyd, R. N. *Organic Chemistry*, 6th ed.; Prentice Hall International, 1992.
- 2. Finar, I. L. Organic Chemistry Volume 1; Pearson Education, 2007.
- 3. Bahl, A.; Bahl, B. S. A Textbook of Organic Chemistry; S. Chand, 2010.
- 4. Jain, M. K.; Sharma, S. C. Modern Organic Chemistry; Vishal Publishing Co., 2010.
- 5. McMurry, J. E. Fundamentals of Organic Chemistry; Cengage Learning, 2010.
- 6. Clayden, J.; Greeves, N.; Warren, S. *Organic Chemistry;* Oxford University Press, USA, 2012.
- 7. Wade, L. G. Organic Chemistry; Pearson Education India, 2008.
- 8. Bruice, P. Y. Organic Chemistry; Pearson, 2017.
- 9. Solomons, T. W. G.; Fryhle, C. B. Organic Chemistry; John Wiley & Sons, 2008.
- 10. Kalsi, P. S. Stereochemistry: Conformation and Mechanism; New Age International, 2008.
- 11. Nasipuri, D. Stereochemistry of Organic Compounds: Principles and Applications; New Age International publishers, 2018.
- 12. Finar, I. L. Organic Chemistry, Volume 2 Stereochemistry and the Chemistry of Natural Products; 5th ed.; Pearson, 2002.
- 13. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry: Part A. Structure and Mechanisms; 5th ed.; Springer: New York, 2007
- 14. Norman, R. O. C.; Coxon, J. M. Principles of Organic Synthesis; 3rd ed.; CRC Press: 1993.
- 15. Pine, S. H. Organic Chemistry; 5th ed.; McGraw-Hill, 2006.
- 16. Gupta, S. S. *Basic Stereochemistry of Organic Molecules;* 2nd *ed.;* Oxford University Press, 2018.
- 17. Talapatra, S. K.; Talapatra, B. Basic Concepts in Organic Stereochemistry; Springer

Nature, 2023.

- 18. Eliel, E. L.; Wilen, S. H. Stereochemistry of Organic Compounds; John Wiley & Sons, 1994.
- 19. Mislow, K. Introduction to Stereochemistry; Dover Publications, 2002.
- 20. Furniss, B. S.; Hannaford, A. J.; Rogers, V.; Smith, P. W. G.; Tatchell, A. R. *Vogel's Textbook of Practical Organic Chemistry*; 5th ed.; Pearson Education, 2005.

Suggested Readings

- 1. Hegstrom, R. A.; Kondepudi, D. K. *The Handedness of the Universe*. Sci. Am. 1990, *262* (1), 108–115. DOI:10.1038/scientificamerican0190-108
- 2. Service, R. F. Does life's handedness come from within? Science 1999, 285, 1282-1283

	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B. Sc CHEMI	STRY (Hons.)				
Course Name	Basic Analytic	al Chemistry				
Type of Course	DSE					
Course Code	MCE3DSECHE200					
Course Level	200-299					
Course Summary	topics such as statistical treat Additionally, i	vers the fundame SI Units, signi tment, calibratic t encompasses imetric analysis y.	ficant digits on graphs, a qualitative	s, precision, and Origin analysis to	, accuracy for data echniques	7, errors, analysis. 5, safety
Semester	III	•	Credits		4	Total
Course Details	Learning Approach	Lecture 4	Tutorial	Practical 0	Others	Hours 60
Pre-requisites, if any			L	1	1	

CO	Expected Course Outcome	Learning	PO
No.		Domains *	No.
1	Explain fundamental measurement concepts, and statistical	U	1, 2, 3,
	analysis in analytical chemistry		10
2	Make use of graphical representation techniques, fostering essential skills for success in analytical chemistry	An	1, 2, 3
3	Apply methods for the qualitative determination of ions	A	1, 2, 3
4	Develop a comprehensive knowledge of titrimetric analysis including redox titrations, complexometric titrations, conductometric titrations and potentiometric titrations	A	1, 2, 3
5	Apply the principles of gravimetric analysis	A	1, 2, 3
6	Analyse various separation and purification techniques of	An	1, 2, 3
7	Distinguish between different chromatographic methods based on	An	1, 2, 3,
	their principle and mechanism		10

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
		Evaluation of Analytical Data and Qualitative Analy	sis	
	1.1	SI Units, significant digits, rounding. Elementary idea of population and sample. Precision and accuracy. Types of errors – determinate and indeterminate errors. Ways to reduce determinate errors. Statistical treatment of analytical data (with Simple problems)-mean, variance and standard deviation. Limit of detection and limit of	6	1
1	1.2	Graphical representation of data: calibration graphs. Introduction to software in data analysis – MS Excel, and Origin. Regression analysis-importance of coefficient of determination.	3	2
	1.3	Qualitative analysis: separation of cations into groups and group reagents. Principle of intergroup separation— solubility, ionic product, solubility product and common ion effect in the precipitation of cations. Identification test of anions-carbonate, chloride, acetate, nitrate, oxalate, fluoride, borate and phosphate ions. Elimination of interfering anions - oxalate, fluoride, borate and phosphate ions.	6	3
		Chemicals apparatus and unit operations of Analytical ch	emistr	y
	2.1	Selecting and handling reagents and other chemicals	2	5
	2.2	Cleaning and marking of laboratory ware	2	5
2	2.3	Evaporating liquids, measuring mass, equipment and manipulations associated with weighing, measuring volume, calibrating volumetric glassware	5	5
	2.4	The laboratory notebook	1	5
	2.5	Safety in the laboratory- the four principles of safety, personal protective equipment: eye protection, lab coat, shoes and long pants, gloves, respiratory protection and masks, hair, lead apron and shields.	5	5
		Titrimetric and Gravimetric Analysis		
3	3.1	Titrimetric analysis – basic concepts of redox reactions, redox titrations involving $KMnO_4$, and $K2Cr_2O_7$, titration curves, redox indicators.	4	4
	3.2	Complexometric titrations – direct, indirect, back and replacement titrations, EDTA titrations. Precipitation titration - methods of argentometric titration-indicators (action not required).	6	4

	3.3	2	4	
	3.4	Gravimetric analysis: unit operations in gravimetric analysis - illustrations using iron and barium estimation.	3	5
		Separation and Purification of compounds		
	4.1	Separation and purification techniques: filtration, recrystallization, precipitation, distillation, fractional distillation, solvent extraction and sublimation.	4	6
4	4.2	Chromatography- principle and classification. Chromatographic techniques: paper chromatography, thin layer chromatography, Rf-values.	3	7
	4.3	Principle and applications of column chromatography, high- performance liquid chromatography (HPLC), gas chromatography, gel permeation chromatography (GPC), ion exchange chromatography, and reverse phase chromatography.	8	7
5		Teacher Specific content	1	<u></u>

Teaching and Learning Approach	 Classroom procedure (mode of transaction) Lecture (chalk & board, PowerPoint presentation) Group discussion Peer teaching Demonstration of experiments Hands-on training
Assessment	 MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA)
Types	Theory: (30 marks) i) Assignments/MCQ/Class test/Viva B. End Semester examination (70 marks)- 2 hrs. i) Short answer 5 questions (out of 7): 5 x 4 = 20 ii) Short essay 5 questions (out of 7): 5 x 7 = 35 iii) Essay 1 question (out of 2): 1 x 15 = 15

- 1. A. Skoog, D. M. West, and S. R. Crouch, *Fundamentals of Analytical Chemistry* 9th Edn, Cengage Learning, 2013.
- 2. Vogel's *Textbook of Quantitative Chemical Analysis*, 6th Edn. Pearson Education Ltd, 2009.
- 3. G. D. Christian, Analytical Chemistry, JohnWiley and Sons, 2020.
- 4. R. Puri, L. R. Sharma, Kalia, *Principles of Inorganic Chemistry*, Milestone Publishers, New Delhi, 2020.

- 5. A. Lee, Scientific Endeavor, Addison Wesley Longman, 2016.
- 6. Crouch and F. J. Holler, *Applications of Microsoft Excel in Analytical Chemistry*, Cengage Learning, 2013.
- 7. R. Gopalan, Inorganic Chemistry for Undergraduates, Universities Press, Hyderabad, 2009.
- 8. Satya Prakash, *Advanced Inorganic Chemistry, Volume 1*, 5th Edition, S. Chand and Sons, New Delhi, 2012.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

पर्णाम्तम ३७									
Programme	B. Sc CHEM	B. Sc CHEMISTRY (Hons.)							
Course Name	Introduction	Introduction to Nanoscience							
Type of Course	DSE	DSE							
Course Code	MCE3DSEC	MCE3DSECHE201							
Course Level	200-299	200-299							
Course	This cours	se explores	basic c	concepts, syn	thesis, prop	perties and			
Summary	applications	of nanomater	rials						
Semester	III		Credits		4	Total			
Course Dotoils	Learning	Lecture	Tutorial	Practical	Others	Hours			
Course Details	Approach 4 60								
Pre-requisites,		1							
if any									

CO No.	Expected Course Outcome	Learning Domains *	PO No.		
1	Explain the fundamental concepts of nanomaterials.	U	1,2,3		
2	Compare bottom-up and top-down approaches in nanomaterial synthesis	An	1,2,3		
3	Describe various characterisation techniques of nanomaterials.	U	1,2,3		
4	Explain the synthesis, properties and applications of different types of nanomaterials.	U	1,2,3		
5	Analyse the applications of nanomaterials in various fields.	An	1,2,3,10		
*Remen	Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
		Classification and Synthesis of Nanomaterials		
	1.1	Feynman's hypothesis- scales of nano systems- Moore's law	1	1
	1.2	Different types of nanomaterials. Classification of nanomaterials based on dimensions, and based on	3	1
1	1.3	Nano in nature: lotus-leaf effect, gecko's feet, butterfly wings, and magneto-tactic bacteria.	3	1
	1.4	Bottom-up approach: chemical precipitation, reduction technique, and sol-gel method.	4	2
	1.5	Top-down approach: mechano-chemical method, laser ablation, and arc-discharge method.	4	2
		Characterization of Nanomaterials		-1
	2.1	Imaging through electron microscopy: Interaction of electron beam with sample. Scanning electron microscope and transmission electron microscope-	5	3
		comparison, advantages, applications and basic instrumental features.		
2	2.2	Scanning probe microscopy: scanning tunneling microscope and atomic force microscope- comparison, applications and basic instrumental features.	5	3
	2.3	Characterisation through spectroscopy (elementary idea only): UV-visible, IR, X-ray photoelectron and Auger electron spectroscopy. Secondary ion mass spectrometry.	5	3
		Properties of Nanomaterials		
	3.1	Metal Nanoparticles (Au, Ag) – synthesis (any one method), properties and applications	3	4
	3.2	Carbon nanotubes– classification, synthesis (any one method), properties and applications	3	4
3	3.3	Quantum dots – semiconductor QDs and carbon dots – synthesis (any one method), properties and	3	4
	3.4	Magnetic nanoparticles – synthesis (any one method), properties and applications	3	4
	3.5	Metal oxide nanoparticles – synthesis (any one method), properties and applications	3	4

		Applications of Nanoparticles		
	4.1	Medicine and Healthcare: applications of nanomaterials in medical diagnosis, advanced drug delivery systems, targeted drug delivery and therapy.	5	5
	4.2	Applications of nanotechnology in integrated circuits, data storage and displays	3	5
4	4.3	Applications of nanotechnology in water purification and air pollution control	2	5
	4.4	Piezoelectric nanomaterials, hydrogen generation and storage, batteries and solar energy harvesting	3	5
	4.5	Chemical and biosensors using nanomaterials and defence applications of nanotechnology	2	5
5		Teacher Specific Content		

	Classroom procedure (mode of transaction)
Teeching and	• Interactive instruction (chalk & board method, multimedia presentation)
Teaching and Learning	Group discussion
Approach	• Peer teaching
Approach	Experimental demonstrations
	Practical training
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA) Theory: (30 marks)
	i) Assignments
	ii) MCQ
	iii) Class test
Assessment	iv) Viva
Types	B. End Semester examination (70 marks)- 2 hrs.
	i) Short answer 5 questions (out of 7): $5 \ge 4 = 20$
	ii) Short essay 5 questions (out of 7): $5 \ge 7 = 35$
	iii) Essay 1 question (out of 2): $1 \ge 15$

- 1. N. Kumar, K. Sunita, Essentials in Nanoscience and Nanotechnology, Wiley, 2016.
- 2. Pradeep, T. *NANO: The Essentials: Understanding Nanoscience and Nanotechnology*; 1st Edition; McGraw-Hill Education: New York, 2007.\
- 3. Muralidharan, V. S.; Subramania, A. Nanoscience and Technology; Ane Books for, 2009
- 4. Poole, C. P.; Owens, F. J. Introduction to Nanotechnology; Wiley, 2003.
- 5. Booker, R.; Boysen, E. Nanotechnology, Wiley India Pvt Ltd, 2008.

- 6. Klabunde, K. J. Nanoscale Materials in Chemistry; Wiley, 2004.
- 7. Hornyak, G. L.; Dutta, J.; Tibbals, H. F.; Rao, A. *Introduction to Nanoscience*; CRC Press, 2008.
- 8. Benelmekki, M. *Nanomaterials: The Original Product of Nanotechnology*; Morgan & Claypool Publishers, 2019.
- 9. Rao, C. N. R., Müller, A., Cheetham, A. K.; *Nanomaterials An Introduction. In The Chemistry of Nanomaterials* 2004, (Chapter 1).
- 10. Ngô, C.; Van de Voorde, M. Nanotechnology in a Nutshell: From Simple to Complex Systems; Atlantis Press, 2014.
- 11. Sengupta, A.; Sarkar, C. K. Introduction to Nano: Basics to Nanoscience and Nanotechnology; Springer Berlin Heidelberg, 2015.

A Designed and the second seco	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B. Sc CHEM	IISTRY (Hons.)				
Course Name	Safe Labora	Safe Laboratory Practices in Chemistry				
Type of Course	DSE					
Course Code	MCE3DSEC	CHE202				
Course Level	200-299					
Course	This course	deals with proper p	orocedures :	for handlir	ng, storin	g, and
Summary	transporting	chemicals safely, incl	uding the us	e of approp	oriate con	tainers
-	and labelling		-			
Semester	III	Cre	edits		4	Total
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours
	Approach	4				60
Pre-requisites, if any				1		

CO	Expected Course Outcome	Learning	PO No.			
No.		Domains *				
1	Identify potential hazards in a laboratory setting	U	1, 2, 10			
2	Exhibit proper handling and usage of laboratory equipment, including safety gear like goggles, gloves, and lab coats.	A	1, 2, 10			
3	Analyse and interpret Material Safety Data Sheets (MSDS) to understand chemical properties, hazards, and proper handling techniques.	An	1, 2, 10			
4	Assess and evaluate potential risks associated with various chemicals and experimental procedures.	U	1, 2, 10			
5	Apply the knowledge of chemical safety in the storage, transportation and disposal of chemicals.	А	1, 2, 10			
*Reme	Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Content for Classroon	n transaction	(Units)
------------------------------	---------------	---------

Module	Units	Course description	Hrs.	CO No.	
		Introduction to Laboratory Safety			
	1.1	The four principles of safety: recognising hazards, assessing the risks of hazards, minimising the risks of hazards and preparing for emergencies.	3	1	
	1.2	Safety ethic. Food, beverages, and smelling in the lab. Basic safety rules for handling laboratory chemicals.	3	1	
1	1.3	Going green in the lab: examples for using safer solvents, reducing volumes and quantity, minimising wastes and hazardous by products, using less toxic	3	1,2	
	1.4	Personal protective equipment: eye protection, lab coat, shoes and long pants, gloves, respiratory protection and masks, hair, lead apron and shields.	3	1,2	
	1.5	The laboratory: hazards, safety features, biological storage, chemical storage, gas storage and use, glassware, electrical safety.	3	1,2	
		Chemicals		-	
	2.1	Safety data sheets, chemical labels, toxic compounds, corrosives -acids and bases, gases, explosives, flammable compounds and oxidizers, cryogenics	4	1, 2, 3, 4	
	2.2	Working with extremely hazardous chemicals, permanent and temporary storage containers.	2	1, 2, 4	
2	2.3	Transporting Chemicals, ethers and other peroxide- forming chemicals, picric acid and nitro compounds, hazard and precautionary statements (H- and P-codes).	4	1, 5	
	2.4	Chemical Waste Management: waste disposal rules and regulations, labelling of hazardous waste, waste containers, sorting of hazardous chemicals, disposal of biological samples and biohazards.	5	1, 5	
3	Hazard Control Measures				
	3.1	Hazard control measures: fume hoods, other laboratory ventilation, safe work procedures, emergency showers and eyewash stations.	4	1,4	
	3.2	Fire and explosion safety: types of fire, fire safety and precautions, preventive measures, fire extinguishers, explosion safety, explosive mixtures.	3	1, 4	

	3.3	Laboratory equipment safety: vacuum pumps and systems safety, heat sources safety, heating mantles, oil and sand baths, ovens and furnaces safety, refrigerators and freezers safety, decontamination of laboratory equipment.	5	1,4	
	3.4	Emergency procedures: chemical spills, fire and explosion, compressed gas leaks. Case study: Bhopal tragedy	3	1,4	
	Demonstration experiments				
4	4.1	 Use of Electronic Balance for weighing chemicals Measurement of volume and determination of density of liquids. Safe use of burners and glassware in the laboratory Use of safety glasses or goggles, apron, and gloves. Use of eyewash station Fire extinguishers Safety Evaluation of common chemicals in the laboratory Fume Hood Interpretation of MSDS datasheets of flammable liquids, toxic, carcinogenic, corrosive and flammable chemicals in the laboratory. Reports on the safe use of acids, bases, oxidising agents and reducing agents. Reports on first aid in the laboratory. Analysis of labels of common chemicals in the laboratory. 	15	1,4	
5	Teacher Specific Content				

Teaching and	Classroom procedure (mode of transaction)			
Learning	Lecture-based approach, interactive discussions, laboratory sessions,			
Approach	flipped classroom, peer teaching and collaborative learning.			
	MODE OF ASSESSMENT			
Assessment	A. Continuous Comprehensive Assessment (CCA)			
Types	Theory: (30 marks)			
U I	i) Assignments/MCQ/Class test/Viva			

B. End Semester examination (70 marks)- 2 hrs.
i) Short answer 5 questions (out of 7): $5 \ge 4 = 20$
ii) Short essay 5 questions (out of 7): $5 \times 7 = 35$
iii) Essay 1 question (out of 2): $1 \times 15 = 15$

- 1. H H Robert Jr, C F, David, *Laboratory Safety for Chemistry Students*, 2nd Edn. Wiley, 2016.
- 2. R S Benjamin, G Sveinbjorn, Handbook for laboratory safety, Elsevier, 2022.
- 3. E Mohamed, *Chemical Laboratory- Safety and Techniques*, de Gruyter, 2022.
- 4. American Chemical Society, Safety in Academic Chemistry Laboratories, 8th Edn, 2017.
- 5. P Carson, C Mumford, *Hazardous Chemicals Handbook*, 2nd Edn. Hazardous Chemicals Handbook, 2002.
- 6. T. S. S. Dikshith, Safe use of chemicals: a practical guide, CRC Press, 2009.
- 7. S L Seager, M R Slabaugh, *Safety-Scale Laboratory Experiments*, 7th Edn. Brooks/Cole, 2010.
- 8. J I García, J A.Dobado, F C Flores, H M García, *Experimental Organic Chemistry: Laboratory Manual*, Elsevier Inc., 2016.
- 9. FENS Laboratory Safety Team, *Laboratory Safety Handbook*, Sabanci University, 2016.

A State	TT THE	МАНА	RAJA'S ((Gov	COLLE(t. Auton			KULA	M	
Program	nme								
Course	Name	Chemistry in Eve	eryday Life						
Type of	Course	MDC							
Course	Code	MCE3MDCCHE	200						
Course	Level	200-299							
Course Summa	ry	This course provi permeates various	-			ndin	ng of hov	v chemist	try
Semeste	r	III		Credits			3	Tota	al
Carros	Details	Learning	Lecture	Tutorial	Practic	al	Others	Hou	rs
Course	Details	Approach	Approach 3 0				45		
any	uisites, if	DMES (CO)							
CO No.	1	Course Outcome					earning mains *	PO No	0.
1	-	he uses of fertilize the environment.	ers and pest	icides and	their		U	1, 2, 3. 6 10	5, 7
2	Compare	various types of dru	igs				An	3, 6, 7,	10
3	Classify s	soaps and understand	l its cleansir	ng action			U	1, 2, 3. 6	5, 7,
4	Investigate the chemical components in personal careAn1, 2, 3. 6products.10					5, 7,			
5 Make use of theories to prepare cosmetics					A,S	1, 2, 3, 6 10	5. 7.		
*Remen	nber (K), U	nderstand (U), Appl Interest (ly (A), Analy (I) and Appl			(E),	Create (C), Skill	(S),

Content for C	Classroom	transaction ((Units)
---------------	-----------	---------------	---------

Module	Units	Course description	Hrs	CO No.
		Chemistry in Agriculture and Medicine		1
	1.1	Fertilizers – introduction. Types of fertilizers - natural, synthetic, NPK fertilizers. Excessive use of fertilizers and its impact on the environment. Bio-fertilizers and organic manures.	4	1
1	1.2	Pesticides - Introduction. Classification (brief idea only) - insecticides, fungicides, herbicides (structures not required). Excessive use of pesticides - environmental hazards. Biopesticides	4	1
	1.3	Classification of drugs - analgesics, antipyretics, antihistamines, antacids, antibiotics and antifertility drugs with examples (structures not required). Psychotropic drugs - tranquilizers, antidepressants and stimulants with examples (structures not required). Drug addiction and abuse. Prevention and treatment.		2
			1	
	2.1	Soaps – introduction, types of soaps - toilet soaps, washing soaps, liquid soap, TFM and grades of soaps, cleansing action, environmental aspects.	5	3
2	2.2	Composition of different types of cosmetics - toothpaste, hair dye, face and skin powders, lipsticks and perfumes, shaving creams Shampoos- ingredients and functions – different kinds of shampoos (anti-dandruff, anti-lice, herbal and baby shampoos). Herbal cosmetics- definition, natural ingredients used- aloe vera, turmeric, henna, amla, neem, clove Harmful effects of cosmetics.	10	4
		Demonstration Experiments		1
3	3.1	 Synthesis of Organic manure Preparation of Toilet soap Evaluate TFM value of soap Preparation of Shampoo Preparation of Perfume Preparation of Sanitizers 	15	5

	5. Preparation of Perfume6. Preparation of Sanitizers
1	Teacher Specific Content
-	

	Classroom procedure (mode of transaction)
Teaching and Learning Approach	Lecture sessions, interactive sessions including discussions, demonstrations, and experiments to engage students actively and visual aids like presentations, videos, and models to enhance understanding. Encourage students to ask questions during or after the lectures. Begin with safety instructions and guidelines for lab work. Allow students to conduct experiments under supervision (for lab work).
Assessment Types	 MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory: (25 marks) i) Assignments Viva ii) Classroom participation (participation in class activities) iii) Examination B. End Semester Examination Theory: (50 marks)- 1.5 hrs i) MCQ 10 questions: 10 x 1 = 10 ii) Short answer 10 questions (out of 12): 10 x 4 = 40

- 1. T. Coultate, Food: The Chemistry of Its Components, 6th Edn. RSC. 2015.
- 2. S. Chowla, *Engineering Chemistry*, Danpat Rai Publication, 2020.
- 3. B.K. Sharma. Industrial Chemistry, Krishna Prakashan, 2023.
- 4. CNR Rao- Understanding chemistry, Universities Press, 1999.
- 5. A. K. De, Environmental Chemistry, New age International Ltd. 2021.
- 6. S. S. Dara, *A Textbook of Environmental chemistry and pollution control*, S.Chand & Company Ltd, 2004.
- 7. Tisdale, S.L., Nelson, W.L. and Beaton, J. D. *Soil Fertility and Fertilizers*, Macmillian Publishing Company, New York, 1990.
- 8. Buchel, K.H. Chemistry of Pesticides, John Wiley & Sons, New York, 1983. .
- 9. Gowariker V.R., Viswanathan N.V. and Jayader Sreedhar, *Polymer Science*, Wiley Eastern Ltd., 1987.
- 10. H. Singh, V.K Kapoor, Organic Pharmaceutical Chemistry, Vallabj Prakasan, 2011.

Received and the second	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme							
Course Name	Forensic Chemistry						
Type of Course	VAC	VAC					
Course Code	MCE3VA0	CCHE200					
Course Level	200-299						
Course	This cours	e provides	a compreh	ensive und	erstanding	of the basic	
Summary	principles of	of chemistry	as they ap	ply to foren	sic science.	It focuses on	
	enabling no	on-chemists	to compreh	end and util	lize chemic	al concepts in	
	forensic and	alysis.					
Semester	3		Credits		3		
Course Details	Learning	Lecture	Tutorial	Practical	Others	Total Hours	
Course Details	Approach 3 45						
Pre-requisites, if any							

CO	Expected Course Outcome	Learning	PO No.			
No.		Domains *				
1	Recognize various types of chemical substances, their properties, and their relevance in forensic contexts.	U	1, 2			
2	Utilize fundamental chemical principles to understand forensic analysis techniques.	А	1, 2, 10			
3	Evaluate and interpret chemical evidence commonly encountered in forensic investigations.	An	1, 2			
4	Explain the role of chemistry in forensic science, including its impact on legal proceedings and criminal investigations.	U	1, 2, 6, 8, 10			
5	Extract meaningful conclusions from chemical data obtained during forensic analysis.	U	1, 2, 6, 8			
*Reme	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Module	Units	Course description	Hrs.	CO No.
		Poisons		
	1.1	Poisons-types and classification- diagnosis of poisons in the living and the dead – clinical symptoms - post-mortem appearances.	4	1,2,3,4,5
	1.2	Heavy metal contamination (Hg, Pb, Cd) of sea foods.	3	1,2,3,4,5
1	1.3	Use of neutron activation analysis in detecting Arsenic in human hair	2	1,2,3,4,5
	1.4	Treatment in cases of poisoning - use of antidotes for common poisons.	3	1,2,3,4,5
		Crime Detection		
	2.1	Accidental explosion during manufacture of matches and fireworks.	2	1,2,3,4,5
	2.2	Human bombs- possible explosives (gelatine sticks and RDX)	3	1,2,3,4,5
	2.3	Metal detector devices and other security measures for VVIP	2	1,2,3,4,5
2	2.4	Composition of bullets and detecting powder burn	2	1,2,3,4,5
	2.5	Analysis of incendiary and timed bombs - spill of toxic and corrosive chemicals from tankers.	3	1,2,3,4,5
		Forgery and Counterfeiting		-
3	3.1	Documents - different types of forged signatures- simulated and traced forgeries – inherent signs of forgery methods - writing deliberately modified - uses of ultraviolet rays - comparison of typewritten letters	5	1,2,3,4,5
	3.2	Checking silver line watermark in currency notes, alloy analysis using AAS to detect counterfeit coins	4	1,2,3,4,5
	3.3	Detection of gold purity in 22 carat ornaments - detecting gold plated jewels - authenticity of diamond.	3	1,2,3,4,5
		Tracks and Traces		
4	4.1	Tracks and traces - small tracks and police dogs footprints- walking pattern or tyre marks	3	1,2,3,4,5

	4.2	Glass fracture – tool mark paints – fibres.	2	1,2,3,4,5
	4.3	Analysis of biological substances - blood, saliva, urine and hair	2	1,2,3,4,5
	4.4	DNA Finger printing for tissue identification in dismembered bodies -detecting steroid consumption in athletes and race horses	2	1,2,3,4,5
5		Teacher Specific Content		

	Classroom nucleadance (made of thenese tion)								
	Classroom procedure (mode of transaction)								
Teaching and	Lecture sessions, interactive sessions including discussions and								
Learning	emonstrations to engage students actively and visual aids like								
Approach	presentations and videos to enhance understanding. Utilize case studies								
	to illustrate how forensic analysis is applied.								
	MODE OF ASSESSMENT								
	A. Continuous Comprehensive Assessment (CCA)								
	Theory: (25 marks)								
	i) Assignments								
	ii) Viva								
Assessment	iii) Classroom participation (participation in class activities)								
Types	iv) Examination								
• •	B. End Semester Examination								
	Theory: 50 marks- 1.5 hrs.								
	i) MCQ 9 questions: $9 \ge 1 = 9$								
	ii) Short answer 5 questions (out of 7): $5 \ge 4 = 20$								
	iii) Short essay 3 questions (out of 5): $3 \ge 7 = 21$								

- 1. T.H.James, Forensic Sciences, Stanley Thornes Ltd, 1987.
- Richard, Criminalistics An Introduction to Forensic Science (College Version), 8th Edition, Sofestein, Prentice Hall, 2003.
- 3. B R Sharma, Forensic Science in Criminal Investigation and Trials, 6th Edn. LexisNexis, 2020.
- 4. B.S. Nabar, Forensic Science in Crime Investigation, Asia Law House, 2022.
- 5. Glencoe, Forensic Laboratory Manual, McGraw Hill, 2001.
- 6. S Bell, Forensic Chemistry, CRC Press, 2022.
- 7. K M Elkins, Introduction to Forensic Chemistry, CRC Press, 2019.

	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)							
Programme								
Course Name	Inorganic and Organic Chemistry							
Type of Course	DSC B							
Course Code	MCE3DSC	CHE202						
Course Level	200-299							
Course	This cour	se provides	a compreh	ensive und	erstanding of	of the various		
Summary	aspects of	norganic and	l organic ch	emistry.				
Semester	III		Credits		4	Total Hours		
Course Details	Learning	Lecture	Tutorial	Practical	Others			
	Approach 3 1 75							
Pre-requisites,								
if any								

CO	Expected Course Outcome	Learning	PO No.
No.		Domains *	
1	Describe radioactivity, its applications and nuclear reactors in India	U	1,2
2	Describe the basic principles of bioinorganic chemistry and the importance of metals in biological systems	U	1,2
3	Discuss the importance of functional groups, aromatic stability and aromatic electrophilic substitution.	U	1,2
4	Investigate the adulterants present in food	An	1,2
5	Describe the basic principles behind geometrical and optical isomerism and conformations	U	1,2
6	Apply basic principles of chemistry in volumetric analysis and organic preparations.	A	1,2,10
Remen	hber (K), Understand (U), Apply (A), Analyse (An), Evaluate (I Interest (I) and Appreciation (Ap)	E), Create (C),	Skill (S),

Module	Units	Course description	Hrs.	CO No.
		Nuclear Chemistry and Bioinorganic Chemistry	ý	
	1.1	6	1	
1	1.2	Nuclear reactors - nuclear reactors in India. application of radioactive isotopes, ^{14}C dating, rock dating, isotopes as tracers, radiodiagnosis and radiotherapy	4	1
-	1.3	Haemoglobin and myoglobin, pH of blood, cytochromes, ferredoxin, mechanism of O2 and CO2 transportation and chlorophyll and photosynthesis (mechanism not expected) elementary idea of photophosphorylation.	4	2
	1.4	Photosynthesis and respiration – comparison. – Elementary idea of structure and mechanism of action of sodium potassium pump. Biochemistry of zinc and cobalt.	3	2
		Food Additives & Adulterants		
2	2.1	Food Additives: Food preservatives, artificial sweeteners, flavours, emulsifying agents, antioxidants, leavening agents and flavour enhancers (definition and examples, structures not required) – Natural pigments in fruits and vegetables (carotenoids, chlorophylls and flavonoids). Artificial ripening of fruits. Common food adulterants in various food materials and their identification: Milk, vegetable oils, tea, coffee powder and chilli powder.	5	4
	2.2	Commonly used permitted and non-permitted food colours BHT, BHA and MSG - (structures not required) Fast foods and junk foods & their health effects – Soft drinks and their health effects	4	4
3		Aromatic Hydrocarbons and Stereochemistry		

	3.1	Nomenclature and isomerism in substituted benzene. Benzene-Structure and stability: Kekule, resonance and molecular orbital description. Mechanism of aromatic electrophilic substitution: Halogenation, nitration, sulphonation and Friedel-Crafts reactions, orientation effect of substituents.	5	3
	3.2	Aromaticity and Huckel's rule: Application to benzenoid (benzene, naphthalene and anthracene) and non-benzenoid (pyrrole, pyridine and indole) aromatic compounds.	4	3
	3.3	Conformations: Conformations of ethane, butane and cyclohexane– explanation of stability.	3	5
	3.4	Geometrical isomerism: definition – condition – geometrical isomerism in but-2-ene and but-2-ene-1,4- dioic acid – methods of distinguishing geometrical isomers using melting point and dipole moment.	4	5
	3.5	Optical Isomerism: optical activity, chirality, – enantiomers, meso compounds, diastereoisomers, optical isomerism in lactic acid and tartaric acid.	3	5
4	4.1	 1. Permanganometry i. Standardization of KMnO₄ using (i) oxalic acid (ii) Mohr's salt ii. Estimation of Fe²⁺ in Mohr's salt and crystalline Ferrous Sulphate using standard KMnO₄. 2. <u>Dichrometry</u> i. Estimation of Ferrous ions (external indicator) ii. Estimation of Ferrous ions (internal indicator) 	30	6
		 Determination of physical constants: melting point, boiling point and density. Preparation of m-dinitrobenzene from nitrobenzene Benzoylation of phenol 		
5		Teacher Specific Content		1

Toophing	Classroom procedure (mode of transaction)						
Teaching and	 Lecture (chalk& board, power point presentation) 						
	 Group discussion 						
Learning	• Peer teaching						
Approach	 Demonstration of experiments 						
	 Hands-on training 						
	MODE OF ASSESSMENT						
	A. Continuous Comprehensive Assessment (CCA)						
	Theory (25 marks)						
	i) Pop quiz/Problem based assignments /Written/MCQ tests						
	Practical (15 marks)						
	i) Quiz/Lab involvement						
	B. End Semester examination						
Assessment	Theory: Written examination (50 Marks)-1.5 hrs.						
Types	i) MCQ 10 questions: $10 \ge 10$						
	ii) Short answer 4 questions (out of 6): $4 \times 3 = 12$						
	iii) Short essay 2 questions (out of 3): $2 \ge 7 = 14$						
	iv) Essay 1 question (out of 2): $1 \times 14 = 14$						
	Practical: 35 marks-1 hr.						
	i) Viva voce-10 Marks						
	ii) Written test of practical procedures-15 Marks						
	iii) Certified report of lab works done -10 Marks						

- 1. 1 H.J. Arnikar, Essentials of Nuclear Chemistry (Revised IV edn.), New Age, 1995
- 2. T.P. Coultate, *Food- The Chemistry of its components*. Royal Society of Chemistry, London.
- 3. B. R. Puri, L. R. Sharma, M.S. Pathania, *Elements of Physical Chemistry*, 3rd Edn. Vishal Pub Co., 2008.
- 4. I. L. Finar, Organic Chemistry, Vol. 1 & 2, 6th Edn. Pearson, 2002.
- 5. C.N. R. Rao, University General Chemistry, Macmillan 2009.
- 6. B. R. Puri, L.R. Sharma and K.C. Kalia, *Principles of Inorganic Chemistry*, Milestone Publishers New Delhi. 2013.
- 7. Puri and Sharma. Advanced Organic Chemistry.
- 8. R. T. Morrison, R. N. Boyd, *Organic Chemistry*, 7th Edn., Pearson Education, New Delhi, 2013.
- 9. I. L. Finar, Organic Chemistry, Vol. I, 5th Edn. Pearson Education, New Delhi, 2013.
- 10. M. K. Jain, S. C. Sharma, *Modern Organic Chemistry*, 3rd Edn., Vishal Publishing Company Co., 2010.
- 11. Swaminathan M., Food Science and Experimental foods, Ganesh and Company.
- 12. J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi, *Inorganic Chemistry*, 5th Edn., Pearson, 2009
- 13. J. Mendham, R. C. Denney, J.D. Barnes, M. Thomas, *Vogel's Text Book of Quantitative Chemical Analysis*, 6th Edn. Pearson Education 2003.
- 14. R. Gopalan, Analytical Chemistry, S. Chand and Co., New Delhi, 2003.
- 15. O. P. Pandey, Practical Chemistry, S. Chand, 2010.

SEMESTER IV

REPORT OF THE REPORT OF THE	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)							
Programme	B. Sc CHEN	B. Sc CHEMISTRY (Hons.)						
Course Name	Organic Ch	emistry-2						
Type of Course	DSC A							
Course Code	MCE4DSC	CHE200						
Course Level	200-299							
Course Summary	•	s derivativ	ons of alcoh ves. Practical npounds.	•		•		
Semester	IV		Credits		4	Total		
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours		
Course Details	Approach	3		1		75		
Pre-requisites, if any				·				

Г

CO No.	Expected Course Outcome	Learning Domains *	PO No.				
Upon	Upon the completion of the course, student will be able to:						
1	Summarize the structure and uses of alcohols, aldehydes, ketones, acids, and acid derivatives.	U	1,2				
2	Predict the product and reasonable mechanism for reactions of alcohols, aldehydes, ketones, carboxylic acids, and its derivatives	E	1, 2				
3	Apply the functional group chemistry to interconvert alcohol, aldehyde, ketone and acid.	А	1, 2				
4	Design synthetic pathways to higher and lower homologous series in acids and alcohols.	A	1, 2				
5	Analyse the functional groups and systematically record the observations. (Practical)	S	1, 2, 4, 10				
	ember (K), Understand (U), Apply (A), Analyse (An), Evalua aterest (I) and Appreciation (Ap)	te (E), Create	(C), Skill				

Module	Units	Course description	Hrs	CO No.
		Alcohols		
	1.1	Alcohols-classification (monohydric, dihydric, polyhydric, primary, secondary and tertiary), Luca's test, preparation of alcohols using Grignard reagents.	2	1, 2, 3
	1.2	Chemical Properties: esterification, reactions with sodium and KMnO ₄ , pinacol-pinacolone rearrangement (with mechanism), ascend and descend in homologous series, alcohol metabolism in human body.	4	1, 3, 4, 5
1	1.3	Phenol- acidity of phenol, effect of substituent on acidity, comparison of acidity of phenols with alcohols. Hydrogen bonding (inter and intramolecular) in phenols, effect of H-bonding on boiling point and solubility in water.	4	1, 3
	1.4	Chemical reactions of phenol: electrophilic substitution reactions-nitration, halogenation, Reimer-Tiemann reaction (with mechanisms) Structure and uses of catechol, resorcinol, quinol and picric acid.	5	3, 4, 5
		Aldehydes and Ketones		1
	2.1	Structure and industrial uses of representative aldehydes and ketones-formaldehyde, acetaldehyde, benzaldehyde and acetone.	2	1
2	2.2	Nucleophilicity of carbonyl compounds- comparison between aldehydes and ketones Nucleophilic addition reactions-reaction with HCN, ammonia derivatives (reaction with primary amine, hydroxylamine, phenylhydrazine).	4	1, 3, 4, 5
	2.3	Acidity of alpha-hydrogen in aldehydes and ketones, aldol condensation, Claisen condensation, Knoevenagel reaction, Claisen-Schmidt reaction, Perkin condensation, benzoin condensation, Cannizzaro reaction (with mechanisms)	6	1, 3, 4, 5
	2.4	Clemmensen reduction, Wolff-Kishner reduction, iodoform reaction, Beckmann rearrangement (with	3	2, 3, 4, 5

		mechanisms) Tollen's and Fehling's reaction						
		Carboxylic acids and acid derivatives						
	3.1	Structure and uses of formic acid, acetic acid, benzoic acid, oxalic acid, phthalic acid, and salicylic acid.	1	1				
	3.2	Acidity of carboxylic acid- effect of substituents on acid strength for aromatic carboxylic acids.	1	1, 2				
3	3.3	Reactions of carboxylic acids: - reduction, decarboxylation and Hell – Volhard - Zelinsky reaction. Ascend and descend in carboxylic acid homologous series.	4	1, 2				
	3.4	Acid derivatives - Conversion of acid to acid chlorides, amides, esters and anhydrides Comparative study of nucleophilicity of acyl derivatives.	3	1, 2				
	3.5	Reactions of acid derivatives with mechanisms: conversion of acid chloride to acid anhydride, ester, amide, aldehyde, and alcohol; conversion of acid anhydride to acid, ester, and amide; conversion of ester to acid, amide, primary and secondary alcohols; conversion of amide to acid, nitrile and primary amine. Reformatsky reaction.	6	1, 2				
	Organic Chemistry-2 Practicals							
4	4.1	Qualitative microscale analysis of organic compounds- identification and preparation of derivatives of alcohols, phenols, aldehydes, ketones, carboxylic acid, and carboxylic acid derivatives.	30	1, 2, 4				
_		Teacher Specific Content		1				
5								

	Classi	Classroom Procedure (mode of transaction)					
Teaching and Learning Approach		Lecture (chalk & board, PowerPoint presentation) Group discussion Peer teaching Demonstration of experiments Hands-on training					

MODE OF ASSESSMENT
A. Continuous Comprehensive Assessment (CCA)
Theory (25 marks)
i) Pop quiz -5 marks
ii) Problem based assignments - 5 Marks
iii) Written/MCQ tests -15 Marks
Practical (15 marks)
i) Quiz
ii) Lab involvement
B. End Semester Examination Theory: Written examination (50 Marks- 1.5 Hrs)
• • • •
i) MCQ 10 questions: $10 \ge 10$
ii) Short answer 4 questions (out of 6): 4 x 3 =12
iii) Short essay 2 questions (out of 3): $2 \ge 7 = 14$
iv) Essay 1 question (out of 2): $1 \times 14 = 14$
Practical (35 marks – 1 Hr)
i) Viva voce-10 Marks
ii) Written test of practical procedures-15 Marks
iii) Certified report of lab works done -10 Marks

- 1. R.T. Morrison, R.N. Boyd and S.K. Bhattacharjee, *Organic Chemistry*; 7th Edn. Dorling Kindersley (India) Pvt. Ltd (Pearson Education), 2011.
- 2. T.W. Graham Solomon, C.B. Fryhle and S.A. Snyder, *Organic Chemistry*; Wiley, 2014.
- 3. J. McMurry, Organic Chemistry; 7th Edn. Cengage Learning, 2013.
- 4. J. Clayden, N. Greeves, S. Warren, Organic chemistry; Oxford University Press, 2012.
- 5. I. L. Finar, I, *Organic Chemistry*; Vol. 1& 2; Dorling Kindersley (India) Pvt. Ltd (Pearson Education).
- 6. M. K. Jain, S. C. Sharma, Modern Organic Chemistry; Vishal Publishing Co., 2010.
- 7. A. Bahl, B. S. Bahl, Advanced Organic Chemistry; S. Chand, 2010.
- 8. F. A. Carey, R. J. Sundberg, *Advanced Organic Chemistry: Part A: Structure and Mechanisms*; Springer Science & Business Media, 2007.
- 9. R. O. C. Norman, J. M. Coxon, Principles of Organic Synthesis; Routledge, 2017.
- 10. S. H. Pine, Organic Chemistry; Tata McGraw-Hill, 2014.
- 11. B. S. Furniss, A. J. Hannaford, V. Rogers, P. W. G. Smith, A. R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*; 5th ed.; Pearson Education, 2005.
- 12. V. K. Ahluwalia, S. Dhingra, *Comprehensive Practical Organic Chemistry-Qualitative Analysis*; University Press, 2000.
- 13. F. G. Mann, B. C. Saunders, *Practical Organic Chemistry*; 4th ed.; Pearson Education, 2009.

Rent yant yet	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	B. Sc CHE	MISTRY (I	Hons.)				
Course Name	Physical Cl	nemistry- 1					
Type of Course	DSC A						
Course Code	MCE4DSC	CHE201					
Course Level	200-299						
Course Summary	This course and phase e			-	ots of gaseous	state, ionic	
Semester	IV	Credits 4 Total					
Course Details	Learning Approach	Lecture Tutorial Practical		Others	Hours 75		
Pre-requisites, if any							

CO No.	Expected Course Outcome	Learning Domains *	PO No.			
Upon	the completion of the course, student will be able to:					
1	Interpret the properties of real and ideal gases and calculate the critical constants theoretically.	Е	1, 2			
2	Distinguish the different types of molecular velocities and define various terms involved on molecular motion.	An	1, 2			
3	Utilize the concepts of acids, bases and buffer solutions to calculate ionic product, pH and ionic strength.	А	1, 2			
4	Interpret different phases coexist in phase diagram.	Е	1, 2			
5	Identify different types of solutions and its properties.	А	1, 2			
6	Distinguish the colligative properties of solutions and calculate the molar mass.	U	1, 2			
7	Make use of theoretical knowledge and execute experiments in phase equilibria, critical solution temperature and colligative properties.	S	1, 2, 10			
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Content for Classroom	transaction	(Units)
------------------------------	-------------	---------

Module	Units	Hrs	CO No.			
		Gaseous State		•		
1	1.1	Deviation of real gases from ideal behaviour: causes of deviation, van der Waals equation of state for real gases. Boyle temperature. Critical phenomena and Andrew's isotherms of CO ₂ , continuity of states, critical constants and their calculation from van der Waals equation. Virial equation of state, van der Waals equation expressed in Virial form.	5	1		
1	1.2	Maxwell Boltzmann distribution laws of molecular velocities (graphical representation – derivation not required) and their importance. Temperature dependence of these distributions.	5	1, 2		
	1.3	Collision properties: Collision cross section, collision number, collision frequency, collision diameter and mean free path of molecules (No derivation). Relation between mean free path and coefficient of viscosity.	5	2		
	Ionic Equilibria					
2	2.1	Introduction – Concepts (Lowry-Bronsted and Lewis concept) of acids and bases, relative strength of acid- base pairs, influence of solvents, Dissociation constants – acids, bases, and polyprotic acids. Ostwald's dilution law.	4	3		
	2.2	Degree of ionization, factors affecting degree of ionization, ionization constant and ionic product of water- pH. Effects of solvents on ionic strength.	3	3		
	2.3	Buffer solutions – Mechanism of buffer action, Henderson equation. Hydrolysis of salts (concepts only).	3	3		
		Phase Equilibria and Solutions				
	3.1	The phase rule (no-derivation). One component system – water and sulphur systems.	2	4		
3	3.2	Two component systems- simple eutectic; lead- silver system. Application to Metallurgy-Pattinson's process.	3	4		
	3.3	Introduction, binary liquid solutions, Raoult's law, ideal and non-ideal solutions, Vapour pressure – composition and temperature – composition curves of ideal and non-	5	5		

		ideal binary liquid solutions.		
	3.4	Critical solution temperature (CST). Solubility of gases in liquids – Henry's law and applications. Distribution of a solute between two solvents– Nernst distribution law.	5	6
	3.5	Colligative properties of dilute solutions – vapour pressure lowering, boiling point elevation and freezing point depression. Molar mass determination (no derivation) -related problems – osmotic pressure –laws of osmotic pressure – reverse osmosis – purification of seawater. Abnormal molecular masses – van't Hoff factor – degree of association and degree of dissociation.	5	6
		Physical chemistry 1 - Practicals		
4	4.1	 Determination of CST of Phenol-water system Effect of KCl/Succinic acid on Critical Solution Temperature of phenol-water system Determination of unknown concentration of KCl/Succinic acid using CST method Transition temperature of salt hydrates. (Sodium thiosulphate, sodium acetate) Determination of mass of solvent/molecular mass of solute using transition temperature. Construction of phase diagram of simple eutectics (Naphthalene-Biphenyl System) Molecular weight determination by Rast's method. (Using naphthalene, camphor or biphenyl as solvent and acetanilide, p- dichlorobenzene etc. as solute.) 	30	7
		Teacher Specific Content		I
5		•		

I	
	Classroom Procedure (mode of transaction)
Teaching	• Lecture (chalk & board and PowerPoint presentations)
and	• Interactive sessions and simulations,
Learning	• Visual aids like videos and models to enhance understanding.
Approach	• Peer discussions.
	 Laboratory experiments and hands-on training
	MODE OF ASSESSMENT
Assessment	A. Continuous Comprehensive Assessment (CCA)
Types	Theory (25 marks)

	i) Pop quiz (5 marks)
	ii) Assignment 5 (Marks)
	iii) Class test(MCQ/written) (15 Marks)
]	Practical (15 marks)
	i) Lab involvement (6 Marks)
	ii) Lab Skill (5 Marks)
	iii) Report of lab works done (4 Marks)
B	. End Semester Examination
, , , , , , , , , , , , , , , , , , ,	Theory: Written examination (50 Marks- 1.5 Hrs)
	i) MCQ 10 questions: $10 \ge 10$
	ii) Short answer 4 questions (out of 6): $4 \ge 3 = 12$
	iii) Short essay 2 questions (out of 3): $2 \ge 7 = 14$
	iv) Essay 1 question (out of 2): $1 \times 14 = 14$
Pr	actical (35 marks- 1Hr)
	i) Viva voce-10 Marks
	ii) Written test of practical procedures-15 Marks
	iii) Certified report of lab works done -10 Marks

- 1. Puri, Sharma, Pathania, *Principles of Physical Chemistry*, 48th Edn. Vishal Publishing Company, 2012
- 2. F. Daniels and R. A. Alberty, *Physical Chemistry*, 3rd ed., John Wiley and Sons, Inc., New York, 2021.
- 3. G.M. Barrow, Physical Chemistry, Tata McGraw-Hill, 2007.
- 4. G. W. Castellan, *Physical Chemistry*, 4th Edn. Narosa Publishing House, 2018.
- 5. K. L. Kapoor, *A Textbook of Physical chemistry*, Volume 5, 4th edition, Macmillan India Ltd., 2018.
- 6. D. A. McQuarrie, J. D. Simon, *Physical Chemistry A molecular Approach*, Viva Books Pvt. Ltd., 2019.
- 7. G. Raj, Advanced Physical Chemistry, Goel Publishing House, 2016.
- 8. I.N. Levine, Physical Chemistry, Tata McGraw Hill, 2011.

Suggested Readings

- 1. R P W Atkins, *Physical Chemistry*, Oxford University Press; 12th edition (5 December 2022)
- 2. R J Silby and R A. Alberty, M G Bawendi, *Physical Chemistry*, (4th Edition) John Wiley & Sons, 2004.
- 3. J. C. Kotz, P. M. Treichel, J. R. Townsend, *General Chemistry*, Cengage Learning India Pvt. Ltd. New Delhi (2009).
- 4. Glasstone, Lewis, Elements of Physical Chemistry, Macmillan student editions, 2nd revised, Van Nostrand, 1960.

Real Providence	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B. Sc CHE	MISTRY (Hons.)			
Course Name	Polymer C	hemistry				
Type of Course	DSE					
Course Code	MCE4DSE	CHE200				
Course Level	200-299					
Course Summary		This course explores synthesis, structure, properties and applications of important polymers.				
Semester	IV		Credits	-	4	
Course Details	Learning	Lecture	Tutorial	Practical	Others	Total Hours
Course Details	Approach	4				60
Pre-requisites, if						
any						

Т

Г

CO No.	Expected Course Outcome	Learning Domains *	PO No.		
Upon t	he completion of the course, student will be able to:				
1	Describe the fundamental concepts of polymers, polymerisation reactions and techniques	U	1, 2, 3		
2	Analyse basic determinants of polymer properties	An	1, 2, 3		
3	Develop a comprehensive idea of tacticity in polypropylene and Ziegler-Natta polymerisation of alkenes.	А	1, 2, 3		
4	Examine the structures, properties, and applications of addition polymers, condensation polymers and polymer resins	U	1, 2, 3		
5	Identify the importance of the vulcanization process and the practical aspects of formulating rubber compounds.	А	1, 2, 3		
6	Analyse the applications of advanced polymers	An	1, 2		
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

٦

Content for	Classroom	transaction	(Units)
--------------------	------------------	-------------	---------

Module	Units	Hrs	CO No.				
		Introduction to polymers and polymerisation reaction	ons				
	1.1	Monomers, oligomers, and polymers. Classification of polymers-based on origin, structure and intermolecular forces Importance of polymers in life- proteins and DNA. (Elementary idea only).	5	1, 2			
1	1.2	Addition polymerisation of olefins - classification (cationic, anionic and free radical), mechanism.	4	1			
	1.3	Mechanism of condensation polymerisation (polyamides and polyesters) and ring opening polymerisation (Nylon 6). Living polymerisation -definition and applications only	5	1, 2			
	1.4	Self-healing polymers and shape-memory polymers- definition and applications only	1	1, 2			
	Polymerisation Techniques						
	2.1	Definition, advantages, disadvantages and examples of bulk polymerisation, suspension polymerisation, solution polymerisation and emulsion polymerisation.	5	1			
2	2.2	Structure-property relationships of polymers: tacticity in polypropylene –isotactic, syndiotactic and atactic. Ziegler-Natta polymerisation of alkenes. Crystalline and amorphous polymers. Basic determinants of polymer properties: Polymer chain flexibility, Factors affecting chain flexibility.	5	1, 4			
	2.3	Molecular weight of polymers: Number average (Mn), weight average (Mw), Polydispersity index. Glass transition temperature (Tg): Definition. Factors influencing glass transition temperature (Tg). Importance of Tg.	5	3			
		Chemistry of Commercial Polymers					
3	3.1	Brief introduction to the structure, properties and applications of the following addition polymers: polyolefins (LDPE, HDPE and PP), poly (vinyl chloride), polystyrene, poly (vinyl acetate), acrylic polymers (PAN and PMMA), fluoropolymers (PTFE).	5	5			

	3.2	Brief introduction to the structure, properties and applications of the following polymers: aliphatic polyamides (Nylon 6,6 and Nylon 6), aromatic polyamides (Kevlar), polyesters (PET).	4	5
	3.3	Brief introduction to structure, properties and applications of the following resins: Formaldehyde resins (PF, UF and MF), polyurethanes, polycarbonates and epoxy resins.	3	5
	3.4	Introduction to vulcanisation of natural rubber-types of vulcanisation (EV, semi-EV and CV), activator system, accelerator system. Formulation of a rubber compound – rubber mat.	3	6
		Polymeric Materials for Special Applications		
	4.1	Support materials: materials based on polystyrene-cross linking with divinylbenzene-applications.	3	6
4	4.2	Drug release agents: biodegradable polyurethane Temperature sensitive polymers as drug delivery agents: LCST polymers-examples and applications.	5	6
	4.3	Conducting polymers:polyacetylene- doping, synthesis and applications	3	6
	4.4	Photo-conducting polymers: applications of poly(vinyl carbazole)	2	6
	4.5	Heat and flame retardant polymers: nomex-applications	2	6
5		Teacher Specific Content		
5				

Teaching and	Classroom Procedure (mode of transaction)
Learning	 Lecture-based approach
Approach	 Interactive discussions
	 Laboratory sessions
	 Flipped classroom
	• Peer teaching
	• Collaborative learning.
	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) (30 marks)
Assessment	i) Assignments: 5 marks
Types	ii) MCQ: 5 marks
	iii) Class test: 15 marks
	iv) Viva: 5 marks

B. End Semester Examination (70 marks- 2 Hrs)
i) Short answer 5 questions (out of 7): 5 x 4 = 20
ii) Short essay 5 questions (out of 7): $5 \ge 7 = 35$
iii)Essay 1 question (out of 2): $1 \ge 15$

- 1. V. R. Gowariker, N. V. Viswanathan, J. Sreedhar, Polymer Science, Wiley, 1986.
- 2. F. W. Billmeyer, Textbook of Polymer Science, John Wiley & Sons, 2007.
- 3. C. E. Carraher, Seymour/Carraher's Polymer Chemistry: 6th Edn. CRC Press, 2003.
- 4. G. Odian, Principles of Polymerization, 4th Edn. Wiley, 2004.
- 5. P. Ghosh, *Polymer Science & Technology*, 2nd Edn. Tata McGraw-Hill, New Delhi, 2002.
- 6. R. W. Lenz, *Organic Chemistry of Synthetic High Polymers*; Interscience Publishers, New York, 1967.
- 7. R. Bahadur, N. V. Sastry, Principles of Polymer Science; Narosa, New Delhi, 2003.
- 8. R. O. Ebewele, Polymer Science and Technology; CRC Press, 2000.
- 9. M. N. Subramanian, M. N. Basics of Polymer Chemistry; River Publishers, 2022.
- 10. J. M. Garcia, Smart Polymers, De Gruyter, 2022.
- 11. A. Ravve, Principles of Polymer Chemistry, Springer, 2012.

River Lynning	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B. Sc CHEMI	STRY (Hon	s.)			
Course Name	Food Chemist	try				
Type of Course	DSE					
Course Code	MCE4DSECI	HE201				
Course Level	200-299					
Course Summary	This course covers the scientific principles behind the composition, structure, properties, and reactions of food components. It also deals with topics related to the various substances added to food to enhance flavour and taste, improve texture and prolong shelf life.					
Semester	IV		Credits		4	Total
Course Details	DetailsLearning ApproachLectureTutorialPractical44444444		Others	Hours 60		
Pre-requisites, if any		I			I	1

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon t	he completion of the course, student will be able to:		
1	Analyse the chemical composition of various food components such as proteins, carbohydrates, lipids, vitamins, and minerals.	An	1,2,3
2	Apply principles of food chemistry to understand and predict the behaviour of food during processing, storage and cooking.	А	1,2,3
3	Explain the significance of food additives.	U	1,2,3
4	Analyse the impact of food practices in the society	An	1,2,4, 5, 6, 8
5	Explain the composition and applications of various components in herbs and spices	U	1, 2, 3
	ember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E) terest (I) and Appreciation (Ap)	, Create (C), S	Skill

Module	Units	Course description	Hrs	CO No.
		Food Additives		
	1.1	Food additives – definition. Preservatives- natural food preservatives, traditional food preservation methods, artificial preservative agents, modern food preservation techniques, safety concerns of food preservatives.	3	2,3
	1.2	Food Colours- classification, chemistry of food colourants, non-permitted food colours, quality assurance of food colourants.	2	2,3
1	1.3	Fragrances, flavouring agents and enhancers- classification, chemistry, quality control of flavour compounds.	2	2,3
	1.4	Emulsifiers- mechanism, role, types with examples.	1	2,3
	1.5	Stabilisers, gums, thickeners and gelling agents	1	2,3
	1.6	Antioxidants- types, chemistry, safety concerns of antioxidants.	2	2,3
	1.7	Food acids and acidity regulators, flour treatment/ improving agents, leavening agents, anticaking agents, minerals and mineral salts, dietary supplements- vitamins	3	2,3
	1.8	FSSAI, Food safety and standards act	1	2,3
		Role of Water, Carbohydrates, Lipids and Proteins in	n Food	•
	2.1	Structure and chemical properties of water, solute effects on water: state of water in foods, water activity: principles, measurement, control, effects and related concepts.	4	1
2	2.2	Carbohydrates- basic chemistry, reactivity and sweetness of simple sugars and oligosaccharides, sugar derivatives: sugar alcohols, glycosides. Browning and related reactions. Polysaccharides- starch, cellulose, gums.	4	1,2
	2.3	Lipids- content and role in food, chemical, nutritional and physical properties, processing of fats and oils, degradation reactions.	3	1,2
	2.4	Proteins- amino acids and proteins, physical properties of proteins,: hydration, ionization, colloidal behaviour, functional properties, effects of food processing: changes occurring in chemical, functional & nutritional	4	1,2

		properties of proteins					
		Enzymes, Vitamins and Minerals					
	3.1	Food enzymes: enzymes acting on carbohydrates, proteins and lipids.	3	1,2			
3	3.2	Vitamins- fat-soluble vitamins, water-soluble vitamins, sources of vitamins, general causes of variation/losses of vitamins in food, biological function of vitamins, toxicity of vitamins.	5	1,2			
	minerals, bioavailability, effect of processing on	Essential mineral elements, nutritional aspects of minerals, bioavailability, effect of processing on mineral bioavailability, chemical and functional properties of minerals in foods.	5	1,2			
	3.4	Societal role of food chemists	2	4			
	Herbs and Spices						
	4.1	Black Pepper: black pepper and white pepper, blackening of pepper, piperine- properties. Health benefits.	3	5			
	4.2	Ginger: components, medicinal uses.	2	5			
4	4.3	Turmeric: uses, components and medicinal applications.	2	5			
	4.4	Cinnamon: components and uses.	2	5			
	4.5	Cardamom: Components and uses.	2	5			
	4.6	Adulteration of herbs and spices.	2	5			
	4.7	Wine: production of wine grapes and wine.	2	5			
5		Teacher Specific Content					
5							

Teaching and	Classroom Procedure (mode of transaction)
Learning	 Lecture-based approach
Approach	 Interactive discussions
	 Laboratory sessions
	 Flipped classroom
	• Peer teaching
	 Collaborative learning.
	MODE OF ASSESSMENT
Assessment Types	A. Continuous Comprehensive Assessment (CCA) (30 marks)
	i) Assignments: 5 mark
	ii) MCQ: 5 marks
	iii) Class test: 15 marks

iv) Viva: 5 marks
B. End Semester Examination (70 marks- 2Hrs)
i) Short answer 5 questions (out of 7): $5 \ge 4 = 20$
ii) Short essay 5 questions (out of 7): $5 \ge 7 = 35$
iii) Essay 1 question (out of 2): 1 x 15 = 15

- 1. S. Damodaran, K. L. Parkin, Fennema's Food Chemistry, 5th Edn. CRC Press 2017.
- 2. H. D. Belitz, W.Grosch and P. Schieberle, Food Chemistry, 4th Edn. Springer, 2009.
- 3. T. Coultate, Food: The Chemistry of Its Components, 6th Edn. RSC. 2015.
- 4. T. A. M. Msagati, *Chemistry of Food Additives and Preservatives*, John Wiley & Sons, 2013.
- 5. V. Kontogiorgos, Introduction to Food Chemistry, Springer, 2021.
- 6. N. Agarwal and A. Srivastava, Food Chemistry, Anu Books, 2023.
- 7. M. Weaver and J. R. Daniel, The Food chemistry Laboratory, CRC Press, 2005.
- 8. S. S. Nielsen, Food Analysis Laboratory Manual, 3rd Edn. Springer, 2019.
- 9. D. D. Miller and C. K. Yeung, Food Chemistry A Laboratory Manual, Wiley, 2022.
- 10. A. V. Ramani, Food Chemistry, Mjp Publishers. 2011.
- 11. J. M. deMAn, Principles of Food Chemistry, Springer, 2018.
- 12. V. Kontogiorgos, Introduction to Food Chemistry, Springer, 2021.

Real Provide Action of the second sec	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	BSc CHEM	ISTRY (F	Ions.)			
Course Name	Basic Analy	tical and	Cosmetic Ch	emistry		
Type of Course	SEC					
Course Code	MCE4SEC	MCE4SECCHE200				
Course Level	200-299					
Course Summary	structure, pr topics relate	operties, and to the va	nd reactions	principles 1 of food comp nces added to ng shelf life.	onents. It als	o deals with
Semester	IV		Credits	-	3	Total
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours
	Approach	3				45
Pre-requisites, if any	Nil					

Т

Г

CO No.	Expected Course Outcome	Learning Domains *	PO No.
Upon t	he completion of the course, student will be able to:		
1	Illustrate the chemistry behind hand care and hygiene products	U	1,3,10
2	Formulate a range of personal care and hygiene products, preparing them for roles in the cosmetic and pharmaceutical industries.	S	2,3,10
3	Discuss the fundamentals of analytical chemistry	U	1,3
4	Apply techniques for soil and water analysis	S	2,3,10
	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (terest (I) and Appreciation (Ap)	E), Create (C),	Skill

٦

Module	Units	Course description	Hrs.	CO No.
		Hand Care Products and Nail preparation	l	
1	1.1	Hand Care Products: Introduction, formulation of hand sanitizers and hand wash. General ingredients and preparation of: (a)Hand wash (b)Antibacterial hand wash (c)Hand sanitizer	8	1,2
	1.2	Nail preparation: Structure of nail, Nail lacquers, Nail polish remover. General Ingredients and Preparation of: Nail polish and nail polish remover	7	1,2
		Personal hygiene products and oral hygiene pro	oducts	
2	2.1	Personal hygiene products: Total fatty matter, alkali content, and pH of soaps. Bathing soap and toilet soap. Antiperspirants and deodorants. General Ingredients and preparation of (a) Soaps (b) Cream Soaps (c) Liquid soaps (hands on training) Oral hygiene products: Common problems associated with teeth and gums. Principles of formulation of Oral hygiene products. Role of herbs in oral care: neem and clove. Flavors and essential oils. General Ingredients and preparation of (a)Tooth powder (chemical-based and herbal) (b)Toothpaste	8	1,2
		(hands on training)		
		Analytical Chemistry		
	3.1	Introduction: Introduction to analytical chemistry and its interdisciplinary nature. Concept of sampling.	3	3
3	3.2	Analysis of soil: composition of soil, concept of pH and pH measurement.a. Determination of pH of soil samples.(hands on training)	5	4
	3.3	Analysis of water: Definition of pure water, sources responsible for contaminating water, water sampling methods, and water purification methods. a. Determination of pH, acidity, and alkalinity of a water sample.	7	4

	(hands on training)				
	Teacher Specific Content				
4					

	Classroom Procedure (mode of transaction)
Teaching and	 Lectures, discussions
Learning Approach	 Hands-on training
	 Presentations and group activities
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA) (25 marks)
	i) Performance in activities- 5 marks
Assessment Types	ii) Assignments- 5 marks
	iii) MCQ examination-15 marks
	B. End Semester Examination (50 Marks- 1.5 Hrs.)
	i) Short answer 10 questions (out of 12): 10 x 2 = 20
	ii) Short essay 6 questions (out of 8): $5 \ge 6 = 30$

- 1. H. Butler, Poucher's Perfumes, Cosmetic and Soap, Springer, 2000
- 2. E.W. Flick, Cosmetic and toiletry formulations, Noyes Publications, New York, 2001
- 3. D.A. Skoog and J.J. Leary, *Instrumental Methods of Analysis*, Saunders College Publications, New York, 1992
- 4. D.A. Skoog, D.M. West and F.J. Holler, *Fundamentals of Analytical Chemistry* 6th Edn., Saunders College Publishing, Fort Worth, 1992
- 5. D.C. Harris, *Quantitative Chemical Analysis* 7th Ed., W. H. Freeman and Co., New York, 2007

Real Property and the second	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme						
Course Name	Basic Envir	onmental	Chemistry			
Type of Course	VAC	VAC				
Course Code	MCE4VAC	MCE4VACCHE200				
Course Level	200-299	200-299				
Course Summary		This course explores various aspects of environmental chemistry such as greenhouse effect, air and water pollution and renewable energy sources.				
Semester	IV	Credits 3				
Course Details	Learning	Lecture	Tutorial	Practical	Others	Total Hours
Course Details	Approach	3				45
Pre-requisites, if any	Nil					

CO No.	Expected Course Outcome	Learning Domains *	PO No			
Upon t	Upon the completion of the course, student will be able to:					
1	Describe basic concepts of environmental chemistry.	U	1,2, 3, 4, 5, 6, 8			
2	Describe strategies for the remediation and purification of contaminated soil, air and water.	U	1,2,10			
3	Apply principles of green chemistry to propose sustainable solutions for minimizing environmental contamination.	А	1,2,6,8,10			
4	Discuss the basic chemical processes involved in air and water pollution and global warming identifying key sources.	U	1,2,8			
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Module	Units	Course description	Hrs	CO No.
		Introduction to the Environment		
1	1.1	Classification of the environment-troposphere, stratosphere, mesosphere, thermosphere, exosphere, hydrosphere, lithosphere and biosphere	5	1
	1.2	Greenhouse gases and global warming: natural occurring greenhouse gases, anthropogenic greenhouse gases, other greenhouse gases, ozone, global warming potential (GWP), emission metrics, influence of technology on global warming.	8	4
	1.3	Schemes to reduce greenhouse gases: capture and storage of carbon dioxide, sequestration of CO2. other schemes to reduce greenhouse gases, removing CO2 from the atmosphere: direct air capture, carbon dioxide emissions in the future	7	2,4
		Air and Water Pollution		
2	2.1	Water pollution causes, categories of water pollution, the long-term consequences of water pollution, basic idea of waste water purification and disinfection	5	2,3,4
	2.2	Air pollution: particulates, fog smog, acid rain, ozone umbrella, depletion- causes, basic idea of air quality improvement methods.	5	2,3,4
		Renewable Energy and Sustainability		1
3	3.1	Renewable energy: hydroelectric, wind, solar, geothermal, and marine energy and their storage and hydrogen as sustainable energy	6	3
	3.2	Biomass energy: biofuels and their resources, decarbonization with biomass utilization. Conversion of biomass to other fuels- ethanol fuel, biodiesel fuel, fuel from algae. Biogas	6	3
	3.3	Sustainable materials: environmental effects of mining and mineral extraction, sustainable utilization of geospheric mineral resources- metals and nonmetal mineral resources	3	3
		Teacher Specific content		
4				

	Classroom Procedure (mode of transaction)			
	 Lecture-based approach 			
Teaching and	 Interactive discussions 			
Learning Approach	 Laboratory sessions 			
8	 Flipped classroom 			
	• Peer teaching			
	 Collaborative learning. 			
	MODE OF ASSESSMENT			
	A. Continuous Comprehensive Assessment (CCA) (25 marks)			
	i) Assignments: 5 mark			
	ii) Viva: 5 marks			
Assassment Tunes	iii) Classroom participation (participation in class activities): 5			
Assessment Types	marks			
	iv) Examination: 10 marks			
	B. End Semester Examination (50 marks- 1.5Hrs)			
	i) MCQ 9 questions: $9 \ge 1 = 9$			
	ii) Short answer 5 questions (out of 7): $5 \ge 4 = 20$			
	iii) Short essay 3 questions (out of 5): $3 \ge 7 = 21$			

- 1. *Chemistry in the Community*, A Project of the American Chemical Society, W H Freeman & Company, 2011.
- 2. C H. Middlecamp, *Chemistry in Context: Applying Chemistry to Society*, A Project of the American Chemical Society, McGraw-Hill, 2012.
- 3. C Baird, M Cann, Environmental Chemistry, W. H. Freeman and Company, 2012.
- 4. D W. Connell, *Basic Concepts of Environmental Chemistry*, 2nd Edn. CRC Press, 2005.
- 5. A K De, A K De, Environmental Chemistry, 10th Edn. New Age International, 2021.
- 6. S.S. Dara Dara, D. D. Mishra, *A Text Book Of Environmental Chemistry & Pollution Control*, S. Chand, 2004.
- 7. V. Subramanian, A Text Book Of Environmental Chemistry. Wiley, 2020.

2		
A	TR	
1º	पणारम्तमइन्द्र	

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

पर्णामृतम३.3						
Programme						
Course Name	Fundament	tals of Phy	sical Chem	istry		
Type of Course	DSC C	DSC C				
Course Code	MCE4DSC	CHE202				
Course Level	200-299	200-299				
Course Summary	surface cher	This course provides the student a thorough knowledge about solids and surface chemistry. It also gives basic information on green chemistry and nano chemistry along with an introduction on spectroscopy.				
Semester	IV	Credits			4	T + 1 II
Course Details	Learning	Lecture	Tutorial	Practical	Others	Total Hours
Course Details	Approach	3		1		75
Pre-requisites, if any						

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon th	he completion of the course, student will be able to:		
1	Describe types of solids, crystals and properties of solids	U	1,2
2	Discuss the adsorption of gases by solids	U	1,2
3	Analyse the properties and applications of colloids	An	1,2
4	Apply the basic principles of electrochemistry to conductance and emf measurements.	А	1,2
5	Apply the principles of electrochemistry to conduct simple laboratory experiments.	S	1,2
*Reme	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (I	E), Create (C),	Skill

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.		
	Solid State					
1	1.1	Classification of solids: amorphous and crystalline – differences. Crystal lattice, unit cell, examples of simple cubic, bcc and fcc lattices, calculation of	6	1		

	1.2	parameters of cubic unit cell. Electrical properties: Conductors, semiconductors and insulators, band theory, superconductors. Magnetic Properties: classification-paramagnetic, diamagnetic, ferromagnetic, antiferromagnetic and ferrimagnetic. Permanent and temporary magnets.	6	1
		Surface chemistry and colloids		
	2.1	Adsorption – types of adsorption of gases by solids, factors influencing adsorption, Freundlich and Langmuir adsorption isotherm (derivation not required).	3	2
2	2.2	True solution, colloidal solution and suspension. Classification of colloids: lyophilic, lyophobic, macromolecular, multimolecular and associated colloids with examples. Purification of colloids by electrodialysis and ultrafiltration.	4	3
	2.3	Properties of colloids: Brownian movement, Tyndall effect, electrophoresis. Origin of charge and stability of colloids, zeta potential, coagulation, Hardy-Schulze rule, protective colloids, gold number. Emulsions.	3	3
	2.4	Applications of colloids: delta formation, medicines, emulsification, micelle formation, cleaning action of detergents and soaps.	2	3
		Electrochemistry		
	3.1	Introduction, Faraday's laws of electrolysis, electrochemical equivalent and chemical equivalent	3	4
3	3.2	Specific conductance, equivalent conductance and molar conductance , variation of conductance with dilution - Kohlrausch's law - degree of ionization of weak electrolytes	4	4
	3.3	Application of conductance measurement: s determination of degree of dissociation of weak electrolytes, conductometric titrations involving strong acid- strong base, strong acid-weak base, weak acid- strong base, and precipitation titrations.	5	4
	3.4	Galvanic cells - Cell and electrode potentials - IUPAC sign convention, Types of electrodes: reference electrodes – standard hydrogen electrode and calomel	7	4

		electrode, indicator electrodes-metal-metal ion electrodes, Quinhydron electrode and Redox electrodes. Standard electrode potential - Nernst equation, electrochemical series. Gibb's Helmholtz equation and EMF of a cell.		
	3.5	Potentiometric titrations of acid-base, redox and precipitation reactions.	2	4
		Physical Chemistry Practicals		
4	 T. th C C C C C C K D 	iscosity-percentage composition of sucrose solution. ransition temperature of salt hydrates, e.g. Sodium hiosulphate Sodium acetate etc. ritical solution temperature of phenol water system onductometric titration of strong acid Vs. strong base otentiometric titrations: Fe^{2+} Vs. $Cr_2O_7^{2-}$ and Fe^{2+} Vs. MnO ₄ betermination of molecular weight by Rast's method. hase diagram of two component systems	30	5
		Teacher Specific Content		
5				

	Classroom Procedure (mode of transaction)				
	 Lecture (chalk & board, PowerPoint presentation) 				
Teaching and	 Group discussion 				
Learning Approach	• Peer teaching				
	 Demonstration of experiments 				
	 Hands-on training 				
	MODE OF ASSESSMENT				
	A. Continuous Comprehensive Assessment				
	Theory (25 marks)				
	i) Assignment (5 marks)				
	ii) Class test (MCQ/Written) (20 Marks)				
	Practical (15 marks)				
Assessment Types	i) Lab involvement				
	ii) Quiz				
	B. Semester end examination				
	Theory: Written Examination (50 Marks- 1.5Hrs.)				
	i) MCQ 10 questions: $10 \ge 10$				
	ii) Short answer 4 questions (out of 6): $4 \times 3 = 12$				
	iii) Short essay 2 questions (out of 3): $2 \ge 7 = 14$				
	iv) Essay 1 question (out of 2): 1 x 14 = 14				

Practical (35 marks- 1Hr)
i) Certified report (10 Marks)
ii) Procedure (15 Marks)
iii) Viva voce (10 Marks))

- 1. R. Puri, L. R. Sharma and M. S. Pathania, *Principles of Physical Chemistry*, 48th Edn., Vishal Publishing Company, New Delhi, 2020.
- 2. F. Daniels, R. A. Alberty, *Physical Chemistry*, 5th Edn., John Wiley and Sons, Canada, 1980
- 3. G. K. Vemulapalli, *Physical Chemistry*, Prentice-Hall of India Pvt. Ltd., 1997.
- 4. K.K. Sharma and L.K. Sharma, *A Textbook of Physical Chemistry*, 5th Edition, Vikas Publishing House, New Delhi, 2012.
- 5. G. M. Barrow, *Physical Chemistry*, 5th Edition, Tata McGraw Hill Education, New Delhi, 2006.
- 6. S. Glasstone, An Introduction To Electrochemistry, Legare Street Press, 2022.
- 7. J. B. Yadav: Advanced Practical Physical Chemistry, Krishna Prakashan Media, 2016.
- 8. R. C. Das and B. Behra; Experiments in Physical Chemistry, Tata McGraw hill, 2010.
- 9. R. Kumari, A. Anand, *Physical Chemistry Laboratory Manual: An Interdisciplinary Approach*, Dreamtech Press, 2020.

SEMESTER V

REPORT OF	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	B Sc CHEM	ISTRY(Hons.)					
Course Name	Organic Ch	emistry - 3					
Type of Course	DSC A	DSC A					
Course Code	MCE5DSCC	MCE5DSCCHE300					
Course Level	300-399						
Course Summary	and epoxides organic phot	explores nitro con s, heterocyclic co cochemistry. Prac nalysis and reacti	ompounds, a tical part o	ctive methyler f the course in	ne compo ncludes q	ounds and ualitative	
Semester	V		Credits	r	4	Total	
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours	
	Approach	3	0	1		75	
Pre-requisites, if any							

Г

CO No.	Expected Course Outcome	Learning Domains *	PO No.
Upon t	he completion of the course, student will be able to:		
1	Predict the product and reasonable mechanism for the reactions of nitro compounds, amines, diazonium salts, cyanides, and isocyanides	А	1,2
2	Explain the reactions of ethers and epoxides	U	1
3	Identify the aromaticity, properties and biological significance of heterocyclic compounds	А	1,2,3
4	Outline synthetic applications of active methylene compounds	U	1,2
5	Apply photochemical methods to organic synthesis	А	1,2
6	Analyse and prepare nitrogen containing compounds and systematically record the observation	S	1,2,4, 10
	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E terest (I) and Appreciation (Ap)	E), Create (C)	, Skill

Module	Units	Course description	Hrs.	CO No.
		Nitrogen Containing Compounds		
	1.1	Nitro Compounds: Preparation of aliphatic and aromatic nitro compounds Tautomerism of nitromethane.	1	1
	1.2	Reactions of nitro compounds: Reduction products of nitrobenzene in acidic, neutral and alkaline media. Electrolytic reduction, and selective reduction of polynitro compounds.	3	1
	1.3	Preparation of amines: Gabriel's phthalimide synthesis,Hoffmann bromamide reaction (with mechanisms).	2	1
1	1.4	Basicity of aliphatic and aromatic amines – a comparative study, Hinsberg test, Quaternary amine salts as phase-transfer catalysts.	4	1
	1.5	Preparation of diazonium salts from aromatic amines, conversion of diazonium salts to benzene, phenol, chloro, bromo, iodo and fluoro benzenes, nitro benzene and azodyes with mechanisms.	3	1
	1.6	Cyanides- Preparation from alkyl halides and carboxylic acids. Reactions- hydrolysis, reduction, reaction with Grignard reagent Isocyanides- preparation from alkyl halides and primary	2	1
		amines. Reactions-hydrolysis, reduction. Ethers, Epoxides and Heterocyclic Compounds		
	2.1	Williamson's ether synthesis. Reactions of ethers- cleavage with HI, Claisen Rearrangement, Zeisel's method of estimation of alkoxy groups.	3	2
2	2.2	Structure of epoxides, Reactions of epoxides with alcohols, ammonia derivatives and LAH.	2	2
	2.3	Classification of heterocyclic compounds, structure and aromaticity of furan, thiophene, pyrrole, pyridine and indole	3	3
	2.4	Synthesis and reactions- furan, thiophene, pyrrole (Paal Knorr synthesis and Knorr pyrrole synthesis), Pyridine (Hantzsch synthesis), Indole (Fischer Indole Synthesis),	5	3

	2.5	Importance of purines and pyrimidines in biological systems- adenine, thymine, guanine, cytosine and uracil	2	3			
		Active Methylene Compounds and Organic Photocher	nistry				
	3.1	Structure and synthetic applications of ethyl acetoacetate and diethyl malonate (synthesis of carboxylic acids and ketones)	5	4			
3	3.2	Photochemistry: introduction. Photochemical versus Thermal reactions. Electronic excitation and fate of excited molecules.	2	5			
	3.3	Photochemical reactions: Norrish type I and II reactions of acyclic ketones, Paterno-Buchi reaction and photo- Fries reaction (with mechanisms), Barton reaction (nitrite ester), di- π methane rearrangement Photochemistry of vision	8	5			
	Organic Chemistry – 3 Practicals						
4	4.1	Qualitative Microscale analysis of organic compounds Identification and preparation of derivatives of amines, amides and nitro-compounds, amides Preparation of m-dinitro benzene from nitro benzene Synthesis of methyl orange Biginelli Reaction	30	6			
5	Teacher Specific Content						

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture - offline Practical
	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory (25 marks)
Assessment Types	 i) Pop quizes-5 marks ii) Problem based assignments -5 Marks iii) Written/MCQ Tests -15 Marks
	Practical (15 marks)
	i) Quizii) Lab involvement

B. End Semester Examination					
Theory: Written examination (50 Marks-1.5 Hrs.)					
i) MCQ 10 questions: $10 \ge 10$					
ii) Short answer 4 questions (out of 6): $4 \ge 3 = 12$					
iii) Short essay 2 questions (out of 3): $2 \ge 7 = 14$					
iv) Essay 1 question (out of 2): $1 \times 14 = 14$					
Practical (35 Marks- 1Hr)					
i) Viva voce-10 Marks					
ii) Written test of practical procedures-15 Marks					
iii) Certified report of lab works done -10 Marks					

- 1. Clayden, J.; Greeves, N.; Warren, S. *Organic Chemistry;* Oxford University Press, USA, 2012.
- 2. Solomons, T. W. G.; Fryhle, C. B. Organic Chemistry; John Wiley & Sons, 2008.3.
- 3. Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry: Part A. Structure and Mechanisms; 5th ed.; Springer: New York, 2007.
- 4. Pine, S. H. Organic Chemistry; 5th ed.; McGraw-Hill, 2006.
- 5. Morrison, R. T.; Boyd, R. N. Organic Chemistry, 6th ed.; Prentice Hall International, 1992.
- 6. Norman, R. O. C.; Coxon, J. M. Principles of Organic Synthesis; 3rd ed.; CRC Press: 1993.
- 7. Finar, I. L. Organic Chemistry Volume 1; Pearson Education, 2007.
- 8. Bahl, A.; Bahl, B. S. A Textbook of Organic Chemistry; S. Chand, 2010.
- 9. Jain, M. K.; Sharma, S. C. Modern Organic Chemistry; Vishal Publishing Co., 2010.
- 10. McMurry, J. E. Fundamentals of Organic Chemistry; Cengage Learning, 2010.
- 11. Wade, L. G. Organic Chemistry; Pearson Education India, 2008.
- 12. Bruice, P. Y. Organic Chemistry; Pearson, 2017.
- 13. Furniss, B. S.; Hannaford, A. J.; Rogers, V.; Smith, P. W. G.; Tatchell, A. R. Vogel's *Textbook of Practical Organic Chemistry*; 5th ed.; Pearson Education, 2005.

R. MILITARIA STA	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B Sc CHEMIS	TRY(Hons.)				
Course Name	Physical Chemistry- 2					
Type of Course	DSC A					
Course Code	MCE5DSCCHE301					
Course Level	300-399					
Course Summary	This course co thermodynamic		ic ideas of	solid state, p	hotochemi	stry and
Semester	V		Credits		4	Total
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours
	Approach	3	0	1		75
Pre-requisites, if any						

Г

CO No.	Expected Course Outcome	Learning Domains *	PO No		
Upon th	he completion of the course, student will be able to:				
1	Illustrate the basic aspects of ionic solids and identify the crystal structure.	An	1,2		
2	Explain the types of defects in solids and properties of semiconductors and liquid crystals.	U	1,2		
3	Apply the fundamental principles of photochemistry to photochemical reactions.	U	1,2		
4	Explain the fundamental laws of thermodynamics and its application in isothermal, adiabatic and Joule-Thomson expansion processes.	U	1,2		
5	Apply the principles of chemical thermodynamics to thermochemical processes and systems of variable compositions.	А	1,2		
6	Apply principles of physical chemistry to conduct laboratory experiments.	S	1,2,4, 10		
	Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

Module	Units	Course description	Hrs.	CO No.
		Solid State	L	
	1.1	Anisotropy in crystals, Laws of Crystallography– Law of constancy of interfacial angles, Law of rational indices. Weiss and Miller indices. X–Ray diffraction by crystals, Bragg's law	4	1
1	1.2	Structure of ionic compounds of the type AX (NaCl, CsCl, ZnS) and AX ₂ (CaF ₂ , Na ₂ O) Defects in crystals – stoichiometric and non-stoichiometric defects. Electrical conductivity, semiconductors- n-type, p-type, Superconductivity (Elementary ideas)	6	1, 2
	1.3	Liquid crystals - Classification, structure thermographic behaviour and applications.	5	2
		Photochemistry		
	2.1	Laws of photochemistry-Grothus-Draper law, Stark- Einstein law. Jablonski diagram-fluorescence, phosphorescence, non-radiative processes, internal conversion, intersystem crossing.	3	3
2	2.2	Quantum yield, examples of low and high quantum yields, photochemical reactions (decomposition of HBr, isomerisation of maleic acid to fumaric acid), photosensitised reactions (photosynthesis, isomerization of 2-butene), chemiluminescence, bioluminescence.	3	3
		Thermodynamics	I	
3	3.1	Internal energy and enthalpy. Heat capacities at constant volume (Cv) and at constant pressure (Cp), relationship between Cp, Cv and R First law of thermodynamics – Mathematical statement of first law. Reversible process and maximum work. Calculation of work, heat, internal energy change and enthalpy change for the expansion of an ideal gas under reversible isothermal and adiabatic condition.	7	4
	3.2	The Joule-Thomson effect – derivation of the expression for Joule-Thomson coefficient. Significance of Joule- Thomson coefficient, inversion temperature.	2	4
	3.3	Limitations of first law. Second law– Different statements of second law, thermodynamic scale of temperature. Carnot cycle and its efficiency, Carnot theorem.	10	5

	Concept of entropy– Definition and physical		
	significance. Entropy as a function of volume and		
	temperature, entropy as a function of pressure and		
	temperature. Criteria of spontaneity and equilibrium.		
	Gibbs and Helmholtz free energies and their		
	significances- criteria of equilibrium and spontaneity.		
	Gibbs-Helmholtz equation		
	Third law of thermodynamic-statement and		
	3.4 determination of absolute entropies of substances. Partial	5	5
	molar quantities- Chemical potential- Gibb-Duhem	2	U
	equation Zeroth law of thermodynamics		
	Physical chemistry II- Practicals		
	1. Heat of neutralization		
	2. Heat of solution– KNO ₃ , NH ₄ Cl (Determination of heat of solution from solubility measurements)		
4	3. Surface tension- Determination of the surface tension of a liquid (Drop number method or Drop weight method).	30	6
	4. Surface tension- Determination of Parachor values		
	5. Determination of the composition of two liquids by surface tension measurements		
	6. Determination of CMC of surfactants by surface		
	tension measurements		
5	Teacher Specific Content		
I			

Teaching and Learning Approach	 Classroom Procedure (Mode of transaction) Lecture Sessions, (chalk & board, PowerPoint presentation) Interactive sessions and simulations, Visual aids like videos and models to enhance understanding. Peer discussions. Laboratory experiments and hands-on training
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory (25 marks) i) Pop quiz (5 marks) ii) Assignment (5 marks) iii) Class test (MCQ/written) (15 Marks) Practical (15 marks) i) Lab involvement and skill

ii) Report of lab works done					
B. End Semester Examination					
Theory: Written examination (50 Marks- 1.5 Hrs)					
i) MCQ 10 questions: $10 \ge 10$					
ii) Short answer 4 questions (out of 6): $4 \times 3 = 12$					
iii) Short essay 2 questions (out of 3): $2 \ge 7 = 14$					
iv) Essay 1 question (out of 2): $1 \times 14 = 14$					
Practical: (35 Marks)					
i) Viva voce: 10 marks					
ii) Writing procedure: 15 marks					
iii) Certified lab report: 10 marks					

- 1. K. J. Laidler, Chemical kinetics, 3rd Edn. Pearson education, 2004.
- 2. L V Azaroff, "Introduction to Solids", McGraw Hill, 2017.
- 3. N B Hannay, "Solid State Chemistry", Prentice Hall, 1967.
- 4. Anthony R. West, "Solid State Chemistry and its Applications", Wiley Eastern, 2022.
- 5. R. P. Rastogi, R. R. Misra, An Introduction to Chemical Thermodynamics, 6th Edn. Vikas Pub. Pvt. Ltd., 2003.
- 6. S. Glasstone, Thermodynamics for Chemists, Affiliated East West Publishers, 2021.
- 7. K. L. Kapoor, A Textbook of Physical chemistry, Volume 5, 4th Edn., Macmillan India Ltd., 2018.
- 8. Puri, Sharma and Pathania, Principles of Physical Chemistry, 48th Edn. Vishal Publishing
- 9. Company, 2020.

Suggested Readings

- 1. P. W Atkins, "Physical Chemistry", Oxford University Press, 2019.
- 2. J. Rajaram, J. C. Kuriakose, Chemical thermodynamics: classical, statistical and irreversible, Dorling Kindersley (India), New Delhi, 2013
- 3. Glasstone and Lewis, Elements of Physical Chemistry, Macmillan, 1963.
- 4. I.N. Levine, Physical Chemistry, Tata McGraw Hill, 2011.143

REPORTED AND	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	B Sc CHEM	ISTRY(H	ons.)				
Course Name	Quantum M	echanics, S	Spectroscopy	v & Group T	heory		
Type of Course	DSE	DSE					
Course Code	MCE5DSEC	MCE5DSECHE300					
Course Level	300-399	300-399					
Course Summary	This course c molecular stru basic princip rotational, vib	ucture, beh les of qu	aviour, and in antum chem	nteractions. T istry, spectro	his course coscopic tec	leals with the hniques like	
Semester	V		Credits		4	Total	
Course Details	Approach					Hours 60	
Pre-requisites, if any		II			I	1	

CO No.	Expected Course Outcome	Learning Domains *	PO No		
Upon th	he completion of the course, student will be able to:				
1	Demonstrate the fundamental concepts of quantum mechanics and describe its application to simple systems.	U	1		
2	Examine the correlation between angular and radial wave functions in determining orbital shapes	An	2		
3	Illustrate the basic concepts of various spectroscopic techniques.	U	2		
4	Deduce various symmetry elements and point groups in molecules	Е	4,5		
5	Develop the group theoretical rules to generate group multiplication tables, matrix representations and classes.	А	2		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Module	Units	Course description	Hrs	CO No.
		Quantum Mechanics		
	1.1	Classical mechanics: Concepts – Newtonian equations of motion and Hamiltonian equation of motion.	1	1
	1.2	Failures of Classical mechanics: Blackbody radiation, photoelectric effect, Compton effect and atomic spectra.	3	1
1	1.3	Schrodinger wave equation; postulates of quantum mechanics –wave function postulate, operator postulate, Hermitian operator, eigen function postulate, expectation value postulate, time dependent postulate.	3	1
	1.4	Application of quantum mechanics to simple systems – Particle in 1-D box, normalization of wave function, application to 1,3 butadiene.	3	1
	1.5	Schrödinger equation for hydrogen atom – Coordinate system-cartesian and spherical polar coordinates, wave equation in spherical polar coordinates and its components - Radial and angular functions (derivation not required)	3	1
	1.6	Shapes of orbitals (s and p) –sketch of angular and radial wave functions. Radial distribution function	2	2
		Molecular Spectroscopy-I		
2	2.1	Introduction: electromagnetic radiation, regions of the spectrum, interaction of electromagnetic radiation with matter, various types of molecular spectroscopic techniques, Beer-Lambert's law, intensity of absorption, Factors affecting intensity - signal to noise ratio, natural line width. Doppler broadening, Born- Oppenheimer approximation	4	3
	2.2	Rotational spectroscopy: Rigid rotor and derivation of moment of inertia. Rotational energy levels, selection rules, relative population of energy levels, appearance of rotational spectra, calculation of bond length in diatomic molecules	5	3
	2.3	Vibrational spectroscopy: harmonic oscillator (concept only), calculation of force constant and energy levels, selection rules, concept of anharmonicity, Morse potential, dissociation energies, fundamental frequencies, overtones, hot bands, Fermi resonance. Degrees of freedom for polyatomic molecules, IR spectrum of water & carbon dioxide.	6	3

		Molecular Spectroscopy-II		
3	3.1	Electronic spectroscopy: singlet and triplet states, selection rules (Spin and Laporte selection rule), Franck-Condon principle –transition, dissociation and predissociation, Polyatomic molecules – qualitative description of σ , π and n- molecular orbitals, their energy levels and the respective transitions.	9	3
	3.2	Nuclear Magnetic Resonance (NMR) spectroscopy: Nuclear spin quantum number, energies of nuclei in magnetic field, Larmor precession, chemical shift and δ scale. Factors affecting chemical shift, spin-spin coupling, coupling constant.	6	3
		Group Theory		
	4.1	Symmetry elements and operations, determination of distinct symmetry operations of Cn and Sn.	2	4
	4.2	Mathematical groups: Properties	1	4
4	4.3	Point group, classification into MLS, MHS and MSS.Determination of point groups of molecules belonging to Cn, Cs, Ci, Cnv, Cnh, C ∞ v, Dnh, D ∞ h, Dnd, Td and Oh point groups.	5	4
	4.4	Abelian groups, cyclic groups, sub groups. Similarity transformation, classes - $C2v$ and $C3v$. Group multiplication tables (GMTs) - C_2v and C_3v . Matrix representation of symmetry elements of E, Cn, Sn, i, σ .	7	4, 5
5		Teacher Specific Content		
5				

Teaching and Learning Approach	 Classroom Procedure (Mode of transaction) Lecture (chalk & board, PowerPoint presentation, flipped classroom) Group Discussion – thought problems; mind mapping Peer interaction Demonstration using simulations / models
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory (30 marks) i) Quiz (5 marks) ii) Assignment – (5 marks) iii) Problem based test - Open book (5marks) iv) Written exam (15 marks)

B. End Semester Examination (70 marks- 2Hrs)

- i) MCQ 10 marks (1 mark each -10 nos)
- ii) Short answer questions 24 marks (3 marks each 8 out of 10 nos)
- iii) Long answer questions 21 marks (7 marks each 3 out of 5 nos)
- iv) Essay type question 15 marks (1 out of 2 nos)

- 1. P.W. Atkins, R.S. Friedman, Molecular Quantum Mechanics, 4th Edn. Oxford University Press, 2005.
- 2. R.K. Prasad, Quantum Chemistry, New Age International, 2001
- 3. Mc Quarrie, J. D. Simon, Physical Chemistry A molecular Approach, Viva Books.
- 4. I. N. Levine, Physical Chemistry, Tata McGraw Hill,
- 5. Banwell, C. N. &Mc Cash, E. M. Fundamentals of Molecular Spectroscopy, 4th Edn. Tata McGraw-Hill: New Delhi, 2006.
- 6. L. Pavia, G. M. Lampman, G. S. Kriz, Introduction to spectroscopy, 3rd Edn, Thomson Brooks/Cole, 2001.
- 7. Rohatgi-Mukherjee, Fundamentals of Photochemistry, New Age International (P) Ltd.
- 8. T. Engel, Quantum Chemistry and Spectroscopy, Pearson Education, 2006.
- 9. F.A. Cotton, Chemical Applications of Group Theory, 3rd Edn. Wiley Eastern, 1990.
- 10. S. Swarnalakshmi, T. Saroja, R.M. Ezhilarasi, A Simple Approach to Group Theory in Chemistry, Universities Press, 2008.
- 11. A.S. Kunju, G. Krishnan, Group Theory and its Applications in Chemistry, PHI Learning, 2010.
- 12. K.Veera Reddy, Symmetry and Spectroscopy of molecules, New Age International (P) Ltd, 1999.

Ranggan and	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	B Sc CHEN	B Sc CHEMISTRY(Hons.)					
Course Name	Green chen	Green chemistry for sustainable development					
Type of Course	DSE						
Course Code	MCE5DSE	MCE5DSECHE301					
Course Level	300-399						
Course Summary		-		e	chemistry cove nd energy usag	0 1	
Semester	V		Credits		4	Total	
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours	
	Approach	4		0		60	
Pre-requisites, if any	Basic conce	pts on gree	en chemistry	7			

CO No.	Expected Course Outcome	Learning Domains *	PO No				
Upon th	Upon the completion of the course, student will be able to:						
1	Familiarize the basic concepts of green chemistry	U	1,2,3,6, 7				
2	Recognize twelve principles and importance of green chemistry	U	1,2,3,6, 7				
3	Identify alternative methods and solvents for green synthesis	А	1,2,3,6, 7				
4	Evaluate the adverse effects of chemicals to environment and select safer green methods for synthesis	Е	1,2,3,6, 7				
5	Deduce the importance of green technologies in sustainable growth of Industry and society	Е	1,2,3,6, 7				
6	Apply suitable energy efficient processes	А	1,2,3,6, 7				
7	Develop cleaner production and treatment mechanisms for pollution prevention.	А	1,2,3,6, 7				
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Module	Units	Course description	Hrs.	CO No.
		Introduction to green chemistry		
	1.1	Introduction. Goals and challenges of Green Chemistry: Introduction of Green protocol: Rules - Rio declaration- Montreal protocol, Kyoto protocol.	3	1
1	1.2	Twelve principles of Green Chemistry with their explanations and special emphasis on the following with examples: Designing a Green Synthesis using these principles; prevention of Waste/ byproducts; maximum incorporation of the materials used in the process into the final products Atom Economy, calculation of atom economy, Atom economic and atom uneconomic reactions: rearrangement (Claisen and fries rearrangements),addition (Michael and Diels Alder reactions),substitution and elimination reactions.	7	2
	Prev	vention and minimization of toxic materials (Green alte	rnative	s)
	2.1	Prevention/ minimization of hazardous/ toxic products: reducing toxicity, measuring toxicity- LD50 & LC50, Ames test Sources of waste, cost of waste, problems caused by waste, waste minimization techniques, on site waste treatment, reuse and recycling.	5	4
2	2.2	Catalysis and green chemistry-Parameters that affect the inherent greenness of a catalyst, comparison of heterogeneous and homogeneous catalysts, elementary ideas on asymmetric catalysts, photocatalysts, biocatalysts and phase transfer catalysts (definition only)	5	4
	2.3	Prevention of chemical accidents- designing greener processes, inherently safer design (ISD), subdivisions of ISD- Minimization, simplification, substitution, moderation and limitation	5	4
	2.4	Energy requirements for reactions - alternative sources of energy: use of microwaves- microwave heating, microwave assisted reactions (in water and solvent free reactions) and ultrasonic energy.	5	6
		Green synthesis		
3	3.1	Green strategies for organic synthesis, green solvents- water, supercritical fluids (supercritical carbon dioxide, supercritical water), ionic liquids, fluorous biphasic solvent, PEG, immobilized solvents and greenness of solvents, solventless processes.	8	3

Content for Classroom transaction (Units)

	3.2	Organic synthesis using green reagents- oxygen, singlet oxygen, ozone, hydrogen peroxide and peroxy acids. Polymer supported reagents- poly-n-bromosuccinimide, polymeric organotin dihydride reagent, polystyrene carbodiimide, polystyrene sulfide, polymer supported peracid, organic synthesis using biocatalyst- biochemical (microbial)oxidations, biochemical (microbial) reductions.	9	3
		Phase Transfer Catalysts and Green Industrial Proces	ses	
4	4.1	Organic synthesis using phase transfer catalysts- mechanism, types of phase transfer catalysts and its advantages. Applications of PTC in organic synthesis: synthesis of nitriles, alcohols, azides and alkyl fluorides from alkyl halides. Green synthesis of following compounds: adipic acid, adiponitrile, ibuprofen, alcohols, aromatic nitriles, cyclohexane oxime, 1- octanol, 3-phenyl catechol.	9	3
	4.2	Green industrial processes: Pollution statistics from various industries, polymer industry, textile industry, greener approach of dyeing, eco-friendly pesticides, pharmaceutical industry, wastewater treatment.	4	7
5		Teacher Specific Content		
5				

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture (chalk & board, powerpoint presentation) Group discussion Case studies Debates Quizzes
	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA)
	Theory (Total 30 marks)
	i) Assignment- (5 marks)
	ii) Quiz - (2Marks)
Assessment	iii)Class test – written (18 Marks)
Types	iv)Class test - MCQ (5Marks)
	B. End Semester Examination
	Theory: Written examination (70 Marks- 2Hrs)
	i) MCQ $- 10$ marks (1 mark each $- 10$ nos)
	ii) Short answer questions – 24 marks (3 marks each – 8 out of 10 nos)
	iii)Long answer questions – 21 marks (7 marks each – 3 out of 5 nos)
	iv)Essay type question – 15 marks (1 out of 2 nos)

- 1. P. Anastas, J. C. Warner, Green Chemistry: Theory and Practice New Ed Edition; Oxford University press, USA, 2000
- 2. M. Lancaster, Green Chemistry; An Introductory Text, Royal Society of Chemistry; Cambridge, UK, 2003
- 3. R. Sanghi, M.M Srivastava, Green Chemistry Environment Friendly Alternatives, Narosa Publishing House,2006
- 4. A K De, A K De, Environmental Chemistry, 10th Edn. New Age International, 2021.
- 5. A. K. Das, Environmental Chemistry with Green Chemistry, Books and allied (P) Ltd., 2010.
- 6. V.K. Ahluwalia, Green Chemistry: Environmentally Benign Reactions, Ane Books India, New Delhi, 2006.
- 7. P.T. Anastas, and J. C. Warner, Green Chemistry: Theory and Practice, Oxford University Press,1998
- 8. M. Kirchoff, and M.A. Ryan, Greener approaches to undergraduate chemistry experiment. American Chemical Society, Washington DC, 2002
- 9. M.A. Ryan, Introduction to Green Chemistry, Tinnesand; (Ed), American Chemical Society, Washington DC, 2002

Realized and the second	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	B Sc CHEM	(STRY(Ho	ns.)				
Course Name	Environmen	tal Chemist	try				
Type of Course	DSE						
Course Code	MCE5DSEC	MCE5DSECHE302					
Course Level	300-399						
Course Summary	and its cons pollution and	servation, i l air pollu effluent tre	mpact ass tion. It al eatment m	sessment, o so address ethods, emj	chemical to es soil cor phasizing th	g, energy sources oxicology, water nposition, waste ne use of plants, te recycling.	
Semester	V		Credits		4		
Course Details	Learning Approach	Lecture 4	Tutorial	Practical	Others	Total Hours 60	
Pre-requisites, if any	Basic unders chemicals, wa	tanding of		onservation,	•	fects of various	

CO No.	Expected Course Outcome	Learning Domains *	PO No.
Upon the	he completion of the course, student will be able to:		
1	Recognize the importance of environmental management and impact assessment	U	1,2,6, 7,8
2	Identify the toxic effects of chemicals	А	1,2,6, 7,8
3	Develop a comprehensive knowledge of water pollution, including its various types, effects, and sources.	А	1,2,6, 7,8
4	Discuss sampling and measurement of diverse water quality parameters	U	1,2,6, 7,8
5	Explain environmental impacts of atmospheric pollution sampling and analysis of key pollutants	Е	1,2,6, 7,8
6	Analyse the soil composition, reactions, soil sampling techniques and management of sustainable agricultural and environmental practices.	An	1,2,6, 7,8

7	Build a comprehensive idea about effluent, water and wastewater treatment methods, biological agents in pollution control and waste management principles		1,2,6, 7,8					
8	Analyse sustainable waste management practices	An	1,2,6, 7,8,10					
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)							

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.
	Envir	onmental Management, Impact Assessment and Chem	nical Tox	icology
	1.1	Basic principles, concepts and scope of environmental planning, Conservation of energy - Renewable and non- renewable energy sources- nuclear energy, solar energy, hydrogen, non-conventional energy sources.	3	1
1	1.2	Environmental pollution - concepts and definition. Impact assessment- aim, concepts and methods. Environmental management system - ISO-14001.	3	1
	1.3	Toxicity -effects, toxic chemicals in the environment, impact of toxic chemicals on enzymes, biochemical effects of As, Cd, Pb, Hg, CO, NOx, SO ₂ , O ₃ , PAN, CN, pesticides and carcinogenic substances	9	2
		Water Pollution		•
	2.1	Types, effects and sources of water pollution. Thermal pollution.	3	3
2	2.2	Sampling and measurement of water quality - odour, colour, EC, turbidity, TDS, salinity, COD, BOD, DO, coliform, pH, acidity, CO ₂ , alkalinity, hardness, phosphate, fluoride, chloride, cyanide, sulphide, sulphate and metals- As, Cd, Fe, Pb and Hg.	12	4
		Air Pollution and Lithosphere		
	3.1	Primary pollutants, hydrocarbons-photochemical smog, particulates, radioactivity, effects of atmospheric pollution – acid rain, ozone layer depletion.	4	5
3	3.2	Air pollution accidents - Bhopal and Chernobyl, air quality standards. Sampling and analysis of pollutants - CO, SO ₂ , H ₂ S, hydrocarbons, SPM.	4	5
	3.3	Composition of soil - reactions in soil. Wastes and pollutants in soil. Sampling procedures and analysis of soil- cation exchange capacity, lime status, lime requirement, gypsum requirement, pH, N, P, K, S, Ca, and Mg. Management of solid waste.	7	6

		Effluent and Waste Management		
	4.1	Effluent - definition and characteristics. Methods for water and wastewater treatment and systems (physical, chemical, and biological).	5	7
4	4.2	Plants, animals and microorganisms for controlling pollution and treatment of effluents. Waste management- definition, characterization, sources and classification.	5	7
	4.3	Waste Management – 3Rs. Waste treatment and disposal –Methods for management for hazardous and toxic wastes.	5	8
5		Teacher Specific Content		
5				

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture (chalk & board, PowerPoint presentation) Group discussion Case studies Debates Quizzes
Assessment Types	 MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory (Total 30 marks) i) Assignment- (5 marks) ii) Quiz - (2Marks) iii)Class test – written (18 Marks) iv)Class test – written (18 Marks) iv)Class test - MCQ (5 Marks) B. End Semester Examination Theory: Written examination (70 Marks- 2Hrs) i) MCQ – 10 marks (1 mark each – 10 nos) ii) Short answer questions – 24 marks (3 marks each – 8 out of 10 nos) iii)Long answer questions – 21 marks (7 marks each – 3 out of 5 nos) iv)Essay type question – 15 marks (1 out of 2 nos)

- 1. A. K. De, Environmental Chemistry, New age International (p) Ltd., 2021.
- 2. G. T. Tyler, Living in the Environment, Tomson Brooke/Cole, 1995.
- 3. N. Manivasakam, Physico-chemical examination of water, sewage and industrial effluents, Pragathi prakashan, 2011.
- 4. Clarson, Soil and water analytical methods, ISBN:81-901483-0-3.
- 5. R. K. Khitoliya, Environmental Pollution Management and Control for sustainable development, S.Chand & Company Ltd, 2004.

- 6. B. B. Kebbekus and S. Mitra, Environmental chemical analysis, Blacke Academic & Professional, 2018.
- 7. S. S. Dara, A Textbook of Environmental chemistry and pollution control, S.Chand & Company Ltd., 2020.
- 8. R. A. Malaviya, Environmental Pollution and its control under international law, Chugh Publications, 1987.
- 9. P. Singh, Environmental pollution management, Chugh Publications, 1985.
- 10. G. K. Ghosh, Environmental pollution A scientific study, Ashish Publishing House, 2005.
- 11. N. L. Numerow, Industrial water pollution, R.E. Krieger Pub. Co., 1987.
- 12. J. W. Moore and S. Ramamoorthy, Organic chemicals in natural waters, Springer, 2012.
- 13. Hutzinger, Aquatic pollutants, Pergamon, 2015.
- 14. F. Kreith Handbook of Solid waste management, Mc Graw Hill Inc., 1994.
- 15. Standard methods for examination of water and waste water, APHA
- 16. P. O' Neil, Environmental Chemistry, Blackie Academic and Professional, London, 1998.
- 17. S. P. Mishra and S N Pandey, Essential Environmental Studies, Ane Books Pvt. Ltd, New Delhi, 2008.
- 18. V K Ahluwalia, Environmental Chemistry, Ane Books Pvt Ltd, New Delhi, 2013.

Real Providence of the second se	Μ	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	B Sc CHEMI	STRY(Hon	s.)					
Course Name	Nanotechnolo	ogy for Ene	rgy Applic	ations				
Type of Course	DSE							
Course Code	MCE5DSEC	HE303						
Course Level	300-399							
Course Summary						rgy systems. It conversion and		
Semester	V		Credits		4	T (1 11		
Course Details	Learning	Lecture	Tutorial	Practical	Others	Total Hours		
	Approach	4				60		
Pre-requisites, if any	Basic understa	anding of sy	nthesis and	properties of	nanomaterial	s.		

CO No.	Expected Course Outcome	Learning Domains *	PO No.				
Upon th	<i>Upon the completion of the course, student will be able to:</i>						
1	Develop a comprehensive knowledge base regarding global energy needs, consumption patterns, classification of energy sources and the energy conservation.	А	1,2,3, 6,7				
2	Differentiate between conventional and non-conventional energy sources.	An	1,2,3, 6,7				
3	Analyse various photovoltaic technologies, including Solar Cells.	An	1,2,3, 6,7				
4	Explain the working principle and architecture of energy storage devices including batteries and capacitors	U	1,2,3, 6,7				
5	Discuss about hydrogen storage technologies	U	1,2,3, 6,7				
6	Develop a comprehensive knowledge of nanostructured materials	U	1,2,3, 6,7				
7	Build a strong foundation in the role of MOFs and two- dimensional materials in energy related applications	А	1,2,3, 6,7				
	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (E) t (I) and Appreciation (Ap)	, Create (C), S	kill (S),				

Module	Units	Course description	Hrs.	CO No.
		Introduction to energy technologies		
1	1.1	Global energy requirements and consumption. Classification of renewable and non-renewable energy technologies. Conventional energy sources – pros and cons (with relevant case studies). Challenges in the development and implementation of renewable energy technologies	9	1
	1.2	Non-conventional sources of energy: Tidal energy, geothermal energy and biomass.	2	1, 2
	1.3	Energy conversion, transport, and storage- challenges and outlooks	4	1
		Nanomaterials for Energy Conversion		
	2.1	Principles of photovoltaic energy conversion (PV): Types of Solar cells: DSSC, OPV, Bulk Hetero Junction (BHJ- SC),Quantum dots, ,Perovskites and Silicon Solar cells	8	3
2	2.2	Nano, micro, poly crystalline and amorphous silicon solar cells. Nano and micro Si-composite structure, various techniques of Si deposition.	4	3
	2.3	Fuel Cells: Working principle and architecture, micro-fuel cell technologies.	3	3
		Nanomaterials for Storage Technology		
	3.1	Introduction to battery technology (working principle and architecture), primary and secondary batteries (Lithium- ion Batteries), cathode and anode materials.	5	4, 6
3	3.2	Capacitors- Principles and materials design. Electrical double layer model. Pseudocapacitor, electrochemical supercapacitors.	5	4, 6
	3.3	Hydrogen storage: Materials and methods, MOFs, metal hydrides and hydrogen storage capacity.	5	5, 6
		State-of-the-art materials in Energy storage and conve	ersion	
	4.1	Nanostructured carbon-based materials, nano-oxides, novel hybrid electrode materials.	5	6
4	4.2	Introduction to MOFs and its role in energy storage and conversion. COFs (elementary idea only).	5	7
	4.3	Elementary idea of the state-of-the-art two-dimensional materials: graphene, boron nitride, carbon nitride, metal chalcogenides (MoS ₂ , MoSe ₂ , etc.).	5	7
5		Teacher Specific Content		

- 1. A. Raj, Marcel V. de Voorde, Y. Mahajan, "Nanotechnology for Energy Sustainability (Applications of Nanotechnology)", 1st Edn, Kindle Edition, Wiley-VCH, 2017.
- 2. J. Twidell, T. Weir, Renewable Energy Resources, E & F N Spon Ltd, 1986.
- 3. T. Pradeep, Nano: The Essentials, 1st edition, McGraw Hill Publishing Co., New Delhi, 2007.
- 4. M. A Green, Solar cells: Operating principles, technology and system applications, Prentice Hall Inc, Englewood Cliffs, 1981.
- 5. H. J. Moller. Semiconductor for solar cells, Artech House Inc, 1993. 4. Ben G Streetman, Solid state electronic device, Prentice Hall of India Pvt Ltd., 1995
- 6. Linden Ed., Handbook of Batteries, 2nd edition, McGraw-Hill, New York 1995.
- 7. Handbook of fuel cells: Fuel cell technology and applications by Vielstich. Wiley, CRC Press, 2004.
- 8. G.A. Nazri and G. Pistoia, Lithium Batteries: Science and Technology, Kluwer Academic Publishers, Dordrecht, Netherlands, 2004.
- 9. J. Larmine, A. Dicks, Fuel Cell System Explained, John Wiley, New York, 2000.
- 10. A. Manthiram, Science and Technology of Lithium Batteries-Materials Aspects: An Overview, Kluwer Academic Publisher, 2000.
- 11. D. Infield, Hydrogen from Renewable Energy Sources, 2004

Record and the second s	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B Sc CHEM	IISTRY (H	ons.)			
Course Name	Medicinal C	Chemistry				
Type of Course	DSE					
Course Code	MCE5DSE0	CHE304				
Course Level	300-399					
Course Summary	This course explores fundamental aspects of medicinal chemistry such as drug discovery, drug action, different classes of drugs, adverse effects of drugs and drug delivery systems.					
Semester	V	Credits 4			Total Hours	
Course Details	Learning	Lecture	Tutorial	Practical	Others	Total Hours
Course Details	Approach	4		0		60
Pre-requisites, if						
any						

CO No.	Expected Course Outcome	Learning Domains *	PO No.					
Upon t	Upon the completion of the course, student will be able to:							
1	Analyse the fundamental aspects of medicinal chemistry such as drug discovery and drug effectiveness.	An	1, 2,3					
2	Examine various aspects of drug action.	An	1, 2,3					
3	Describe different classes of drugs with suitable examples.	U	1, 2,3,6					
4	Explain adverse effects of drugs.	U	1, 2,3					
5	Discuss advanced drug delivery systems.	U	1, 2, 3, 7					
*Ren	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)							

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.		
		Introduction to Medicinal Chemistry				
	1.1	Overview of medicinal chemistry: definition and scope of medicinal chemistry. Drugs: classification, sources and routes of administration.	5	1		
1	1.2	Drug discovery: target identification and validation, lead identification and optimisation, preclinical testing, pharmacology/toxicology and clinical studies- phase I, II and III. Ways of identification of lead compounds.	7	1		
	1.3	Effectiveness of a drug: chemotherapeutic index and therapeutic index. Drug selectivity.	3	1		
		Drug Action				
	2.1	The pharmacokinetic phase: absorption, distribution, metabolism and elimination (ADME) of the drug. Bioavailability of a drug. The pharmacodynamics phase.	5	2		
2	2.2	Drug metabolism: sites of drug metabolism and phase I and phase II reactions. Prodrugs.	6	2		
	2.3	Drug receptors (elementary idea only), agonists and antagonists, partial agonists. Elementary idea of induced fit theory of drug action.	4	2		
	Classes of Drugs					
3	3.1	Definition of the following classes of drugs with use of the given example: anaesthetics- thiopentone sodium, sedatives- phenobarbital, anti-epileptic drugs- clobazam, anxiolytic agents-benzodiazepine, narcotic analgesics – morphine and anticancer drugs- cisplatin.	5	3		
	3.2	Definition of the following classes of drugs with use of the given example: adrenergic stimulants- adrenaline, adrenergic blockers- tolazoline, cholinergic stimulants- acetylcholine, cholinergic blockers- dicyclomine and cardiotonic drugs- digoxin.	5	3		
	3.3	Definition of the following classes of drugs with use of the given example: antibiotics- chloramphenicol, antiviral drugs: amantadine, antimalarials- chloroquine, tranquilisers: benzodiazepines and antipsychotics- phenothiazine.	5	3		
4		Adverse Drug Effects and Drug Delivery System	S			

	4.1	Adverse drug effects: predictable and unpredictable drug reactions and severity. Classification of adverse drug effects, pharmacovigilance and prevention of adverse drug effects.	7	4
	4.2	Drug formulations- sustained-release, controlled release, programming the release and prodrugs. Nanomaterials in drug delivery: liposomes, polymer nanoparticles, chitosan nanoparticles, nanosponge and targeted drug delivery in cancer using nanoparticles. Gene delivery: applications of nanoparticles in gene delivery.	8	5
5		Teacher Specific Content		
5				

	Classroom Procedure (Mode of transaction)
Teaching and	 Lecture (chalk & board, PowerPoint presentation)
Learning	 Group discussion
Approach	• Peer teaching
	 Demonstration of Experiments
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
	Theory (30 marks)
	i) Assignment- (5 marks)
	ii) Quiz - (2 Marks)
Assessment	iii) Class test – written (18 Marks)
Types	iv) Class test - MCQ (5 Marks)
	B. End Semester Examination (70 marks- 2Hrs)
	i) MCQ – 10 marks (1 mark each – 10 nos)
	ii) Short answer questions -24 marks (3 marks each -8 out of 10 nos)
	iii) Long answer questions -21 marks (7 marks each -3 out of 5 nos)
	iv) Essay type question – 15 marks (1 out of 2 nos)

- 1. D. Sriram, P. Yogeeswari, Medicinal Chemistry, Pearson Education India, 2010.
- 2. K. D. Tripathi, *Essentials of Medical Pharmacology*, Jaypee Brothers Medical Publishers, 2013.
- 3. G. Thomas, Fundamentals of Medicinal Chemistry, Wiley, 2003.
- 4. K. K. Jain, Drug Delivery Systems, 3rd Edn. Humana Press, 2020.
- 5. G. Patrick, Medicinal Chemistry, Oxford University Press. 2018.
- 6. V. F. Roche and T Lemke, *Foye's Principles of Medicinal Chemistry*, 8th Edition, Lippincott Williams and Wilkins, 2019.
- 7. A. Kar, Medicinal Chemistry, 8th Edition, New Age International, 2022.
- 8. T. Nogrady, D.F. Weaver, Medicinal Chemistry, Oxford University Press, 2005.

- 9. W. O. Foye, T. L. Lemke, D.A. Williams, *Principles of Medicinal Chemistry*, 4th Edn. Williams & Wilkins, 1995.
- 10. J. P. Remington, Remington's Pharmaceutical Sciences, 23rd Edition, Elsevier, 2021.
- 11. L. S. Goodman, A. Gillman, *The Pharmacological Basis of Therapeutics*, 10th Edn. McGraw Hill, 2016.
- 12. S. S. Kadam, Principles of Medicinal Chemistry, Vol. I & II, Pragati Books, 2016.
- 13. C. O. Wilson, J. M. Beale, J. H. Block, *Textbook of Organic Medicinal and Pharmaceutical Chemistry*, 12th Edn., Lippincott Williams and Wilkins, 2010

Revisyant M	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B Sc CHEMISTI	RY (Hons	.)			
Course Name	Main Group Elen	nents				
Type of Course	DSE	DSE				
Course Code	MCE5DSECHE3	MCE5DSECHE305				
Course Level	300-399	300-399				
Course Summary	This course explores the basic aspects of main group elements					
Semester	V Credits 4 Total Hot			Total Hours		
Course Details	Learning Approach	Lecture 4	Tutorial	Practical	Others	60
Pre-requisites, if any				·		

Г

CO No.	Expected Course Outcome	Learning Domains *	PO No	
1	Understand the classification of S block elements in the periodic table: general trends and properties of elements and structure of molecules	U	1,2	
2	Apply knowledge of fundamental chemical principles to explain and predict the behavior of P-block elements and compounds	А	1,2	
3	Analyze the structural aspects of boron and silicon compounds	An	1,2	
4	Apply knowledge of halogens and interhalogens to predict the outcomes of simple reactions.	А	1,2	
5	Apply Valence Bond and Molecular Orbital theories to explain bonding in noble gas compounds	А	1,2	
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

Module	Units	Course description	Hrs.	CO No.			
	Chemistry of s-Block Elements						
1	1.1	General characteristics: melting point, flame colouration, reducing nature, diagonal relationships and anomalous behaviour of first member of each group. Reactions of alkali and alkaline earth metals with oxygen, hydrogen, nitrogen and water. Common features such as ease of formation, thermal stability, energetics of dissolution, and solubility of the following alkali and alkaline earth metal compounds: hydrides, oxides, peroxides, superoxides, carbonates, nitrates, sulphates.	8	1			
	1.2	Complex formation tendency of s-block elements; structure of the following complexes: crown ethers and cryptates of Group I; basic beryllium acetate, beryllium nitrate, EDTA complexes of calcium and magnesium. Solutions of alkali metals in liquid ammonia and their properties	7	1			
		Chemistry of p-Block Elements	<u> </u>	1			
2	2.1	Electronic configuration, atomic and ionic size, metallic/non-metallic character, melting point, ionization enthalpy, electron gain enthalpy, electronegativity, Catenation, Allotropy of C, P, S; inert pair effect, diagonal relationship between B and Si and anomalous behaviour of first member of each group. Synthetic diamonds (elementary idea)	8	2			
	2.2	Catenation and heterocatenation' in inorganic compounds. Types of inorganic polymers. Comparison with organic polymer, preparation and uses of borazine - similarities in structure with benzene. Boron nitrides- comparison with graphite.	7	2			
		Important Group 13 and Group14 compou	nds				

3	3.1	Comparative studies including diagonal relationship of group 13 and 14 elements. Anomalous behaviour of Boron. Preparation, structure, and bonding of diborane, uses of diborane. STYX numbers and WADE's rule, (Closo, nido, arachno) e.g. $B_{12}H_{12}^{2-}$, B_5H_9 and B_4H_{10}	8	3	
	3.2	Boron nitrides, boranes, carboranes and metallocarboranes. Silicates and classification, aluminosilicates, natural and synthetic zeolites and application of zeolites as molecular sieves. Silicon based polymers-silicones, silicon rubbers (preparation, important properties and uses)	7	3	
	Halogen and Noble Gas Compounds				
		Halogen and Noble Gas Compound	ds		
4	4.1	Properties of halogens. Interhalogens - classification- general preparation- structures of AB, AB ₃ , AB ₅ and AB ₇ types. Reactivity (CIF, ICl ₃ , CIF ₃ , IF ₅ and IF ₇). Comparison of pseudohalogens with halogens.	ds 7	4	
4	4.1	Properties of halogens. Interhalogens - classification- general preparation- structures of AB, AB ₃ , AB ₅ and AB ₇ types. Reactivity (CIF, ICl ₃ , CIF ₃ , IF ₅ and IF ₇).		4	
4		 Properties of halogens. Interhalogens - classification- general preparation- structures of AB, AB₃, AB₅ and AB₇ types. Reactivity (ClF, ICl₃, ClF₃, IF₅ and IF₇). Comparison of pseudohalogens with halogens. Occurrence and uses, rationalization of inertness of noble gases, Clathrates; preparation and properties of XeF₂, XeF₄ and XeF₆; Bonding in noble gas compounds (Valence bond and MO treatment for XeF₂), Shapes of noble gas 	7		

Teaching and	Classroom Procedure (Mode of transaction) Lectures (chalk & board, multimedia presentations) Group Discussions 			
Learning	 Case studies 			
Approach	o Quizzes			
	MODE OF ASSESSMENT			
	A. Continuous Comprehensive Assessment (CCA)			
	Theory (30 Marks)			
Assessment	i) Quiz (5 marks)			
Types	ii) Assignment – (5 marks)			
	iii) Problem based test - Open book (5marks)iv) Written exam (15 marks)			

B. End Semester Examination
Theory: Written examination theory (70 Marks- 2 Hrs)
i) MCQ -10 marks (1 mark each -10 nos)
ii) Short answer questions -24 marks (3 marks each -8 out of 10 nos)
iii)Long answer questions -21 marks (7 marks each -3 out of 5 nos)
iv)Essay type question -15 marks (1 out of 2 nos)

- 1. W. Henderson, Main Group Chemistry, Royal Society of Chemistry, 2000.
- 2. F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, *Advanced Inorganic Chemistry*, 6th Edn. John Wiley and Sons, 2007.
- J.E. Huheey, E.A. Keiter, R.L. Keiter, *Inorganic Chemistry: Principles of Structure and Reactivity*, 4thEdn. Pearson Education, 2000.
- F. Shriver, P. W. Atkins, *Inorganic Chemistry*, 5th Edn. Oxford University Press, 2010.
- 5. K.F. Purcel, J.L. Kotz, *An Introduction to Inorganic Chemistry*, Saunders College, 1980.
- 6. J. D. Lee, Concise Inorganic Chemistry, ELBS, 1991.
- 7. N.N. Greenwood, A. Earnshaw, *Chemistry of the Elements*, Butterworth-Heinemann. 1997.
- 8. G. L. Miessler, D. A. Tarr. Inorganic Chemistry, 4th Edn. Pearson, 2010.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

कामाउम्तमउन्द						
Programme	B Sc CHEMISTRY (Hons.)					
Course Name	Analytical Chemistry and Professional skills					
Type of Course	SEC					
Course Code	MCE5SECCHE300					
Course Level	300-399					
Course Summary	This course provides a comprehensive introduction to analytical chemistry, focusing on interdisciplinary concepts, precision in analysis, and practical applications in soil and water studies. It incorporates hands-on experiences, including workshops, interview training, industrial visits, and expert interactions, culminating in a career-oriented project for enhanced professional readiness.					
Semester	V	Credits 3 Total			Total	
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours
		3				45
Pre-requisites, if any	Nil					

CO No.	Expected Course Outcome	Learning Domains *	PO No.
Upon th	he completion of the course, student will be able to:		
1	Outline the fundamentals of analytical chemistry	U	1,2
2	Conduct soil and water analysis	An	1,2,4, 10
3	Explain the principles of chromatographic techniques	U	1,2
4	Apply the principles of Thin Layer Chromatography and column chromatography for purification and separation purposes.	А	1,2,10
5	Develop professional skills effectively and contribute meaningfully to their chosen fields.	Е	4,9, 10
	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate erest (I) and Appreciation (Ap)	(E), Create (C)), Skill

Module	Units	Course description	Hrs.	CO No.			
1	1.1	Introduction : Introduction to Analytical Chemistry and its interdisciplinary nature. Concept of sampling. Importance of accuracy, precision, and sources of error in analytical measurements.	3	1			
	1.2	 Analysis of soil: Composition of soil, Concept of pH and pH measurement, Complexometric titrations, Chelation, Chelating agents, use of indicators. a. Determination of pH of soil samples. b. Estimation of Calcium and Magnesium ions in soil by complexometric titration. 	6	2			
	1.3	 Analysis of water: Definition of pure water, sources responsible for contaminating water, water sampling methods, and water purification methods. a. Determination of pH, acidity, and alkalinity of a water sample. b. Determination of the Hardness of water. 	6	2			
2	2.1	Introduction to chromatography: Basic principles of chromatography, types of chromatography	2	3			
	2.2	Theory and Application -Gas chromatography, High- Performance Liquid Chromatography (HPLC)	5	3			
	2.3	Theory, application, and demonstration of Thin Layer Chromatography and Column Chromatography (Hands on Training)	8	4			
	Professional Development						
3	3.1	 Workshop on career awareness Training sessions for interviews Industrial visit Interaction with industrial experts Create minor project 	15	5			
4	Teacher Specific content						

	Classroom Procedure (Mode of transaction)			
	0	Lectures		
Teaching and	0	Group discussions,		
Learning	0	Group activities,		
Approach	0	Seminars		
	0	Industrial visits		
	0	Study tours		

	MODE OF ASSESSMENT					
	A. Continuous Comprehensive Assessment (CCA) (25 marks)					
	i) Performance in activities					
Assessment	ii) Industrial visit report					
Types	iii) Project work					
	B. End Semester Examination (50 marks- 1.5 Hrs)					
	i) Short answer questions – 20 marks (2 marks each – 10 out of 12 nos)					
	ii) Long answer questions – 30 marks (5 marks each – 6 out of 8 nos)					

- 1. D. A. Skoog, J. J. Leary, *Instrumental Methods of Analysis*, Cengage India Private Limited, 2020.
- 2. A. Skoog, D. M. West, F. J. Holler, *Fundamentals of Analytical Chemistry*, 6th Ed., Cengage Learning India Pvt. Ltd., 2022.
- 3. C. Harris, *Quantitative Chemical Analysis* 7th Edn. W. H. Freeman and Co., New York, 2007
- 4. Helfman, Chromatography, Van Nostrand, Reinhold, New York
- 5. Lederer and M. Lederer, Chromatography, Elsevier, Amsterdam.
- 6. J. A. Dean, Chemical separation methods, Von Nostrand Reinhold, New York
- 7. R.P.W Scott, Techniques and Practice of Chromatography, Marel Dekker Inc., New York

SEMESTER VI

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B Sc CHEM	B Sc CHEMISTRY (Hons.)							
Course Name	Inorganic C	Inorganic Chemistry-2							
Type of Course	DSC A								
Course Code	MCE6DSC	MCE6DSCCHE300							
Course Level	300-399	300-399							
Course Summary	compounds a	and bioinorg	anic chemis	oordination cl try. This cours uantitative an	se also provi	des the basic			
Semester	VI		Credits		4	Total			
Course Details	Learning Approach	Lecture 3	Others	Hours 75					
Pre-requisites, if any	Inorganic C	Inorganic Chemistry-1							

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No			
1	Compare the theories of coordination chemistry	An	1,2			
2	Explain the mechanisms of substitution reactions	U	1,2			
3	Describe the key concepts of inorganic and organometallic chemistry	E	1,2			
4	Illustrate stability of organometallic compounds, clusters and their application in industrial catalysts.	U	1, 2, 10			
5	Explain the importance of various metal ions in biological systems	U	1,2,10			
6	Analyse different complexes based on colourimetry and electronic spectra	An	1,2,10			
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Module	Units	Course description	Hrs.	CO No.
		Coordination Chemistry- 2		
	1.1	Merits and demerits of VBT and CFT	1	1
	1.2	Crystal field splitting in tetragonally distorted octahedral geometry, Jahn-Teller distortion in Cu (II) complexes.	2	1
	1.3	MO theory, evidences for metal-ligand covalency- Nephelauxetic effect, MO diagram of complexes of octahedral symmetry (sigma bonding only)	3	1
1	1.4	Spectral and magnetic properties of metal complexes- d-d transition, electronic absorption spectrum of $[Ti (H_2O)_6]^{3+}$ ion. Charge transfer spectra e.g. KMnO ₄ , K ₂ Cr ₂ O ₇ (Elementary idea). Types of magnetic behaviour, spin-only formula, calculation of magnetic moments.	3	1
	1.5	Reactivity of metal complexes-Labile and inert complexes	1	2
	1.6	Ligand substitution reactions: - S_N1 and S_N2 , ligand substitution reactions in square planar and octahedral complexes	3	2
	1.7	Trans effect- theories and applications- polarization and π - bonding theory.	2	1
		Organometallic Compounds		
	2.1	Introduction to organometallic compounds, hapticity	1	3
2	2.2	18- electron rule, numerical problems and stability	2	3
2	2.3	Ferrocene: Preparation, structure, aromaticity and reactions (acetylation, alkylation).	2	3
	2.4	Metal-alkene complexes – Preparation and structure of Zeise's salt	1	3
	2.5	Catalytic properties of organometallic compounds - Zeigler Natta catalyst in the polymerization of alkene. Wilkinson catalyst in the hydrogenation of alkene (mechanism not expected).	2	4
	2.6	Preparation and structure of mononuclear carbonyls- Mo(CO) ₆ , Fe(CO) ₅ and Ni(CO) ₄	3	4
	2.7	Polynuclear carbonyls, bridged carbonyls and bonding in metal carbonyls $-Mn_2(CO)_{10}$ and $Fe_2(CO)_{9}$.	2	4

Content for Classroom transaction (Units)

	2.8	Synergic effect and use of IR data in metal carbonyls to explain extent of back bonding	1	4
	2.9	Quadruple bond structure of $[Re_2CI_8]^{2}$ Quintuple bond (non-evaluative)	1	4
		Introduction to Bioinorganic Chemistry		
	3.1	Essential and non – essential metals	1	5
	3.2	Mechanism of ion transport- Ion pump (Na ⁺ and K ⁺)	2	5
3	3.3	Porphyrins, Oxygen carriers- hemoglobin and myoglobin- structure and functions, oxygen transport mechanism, cooperativity effect, Bohr effect	3	5
	3.4	Cytochromes- Structure and functions of Cytochrome P-450	1	5
	3.5	Non-heme proteins- structure and functions of hemocyanin & hemerythrin	1	5
	3.6	Photosynthesis- Chlorophylls (Structure not needed) – Z-scheme (only).	2	5
	3.7	Electron transfer proteins- structure and functions of ferredoxin, rubredoxin. Zinc containing metalloenzymes: carbonic anhydrase and carboxypeptidase. Vitamin B ₁₂ (structure not expected)	3	5
	3.8	Toxicity of metals - Cd, Hg, Pb and Cr, with specific examples.	1	5
	3.9	Treatment of metal toxicity by chelation therapy (EDTA)	1	5
		Inorganic Chemistry-2 Practicals		
4	4.1	Colorimetric estimation of Fe, Cu, Ni, Mn, Cr, NH4 ⁺ , nitrate and phosphate ions. Or UV- Visible spectral studies of different coordination compounds	15	6
	4.2	Study of the reactions of the following radicals with a view to their identification and confirmation. Pb^{2+} , Al^{3+} , Zn^{2+} , Mn^{2+} , Ni^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} , Mg^{2+} , NH_4^+ , CO_3^{2-} , SO_4^{2-} , Cl^- , Br^- , CH_3COO^- Systematic qualitative analysis of mixtures containing two acid and two basic radicals from the above list without interfering radicals by Semi- micro method only.	15	6

	(Minim	um of 5 mixtures to be analysed)	
5		Teacher Specific content	

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture (chalk & board, PowerPoint presentation) Group discussion Peer teaching Demonstration of experiments Hands-on training 				
	MODE OF ASSESSMENT				
	A. Continuous Comprehensive Assessment				
	Theory (25 marks)				
	i) Quiz (5 marks)				
	ii) Assignment (5 marks)				
	iii) Class test (15 Marks)				
	Practical (15 marks)				
	i) Lab involvement and skill				
Assessment	i) Report of lab works done				
Types	B. End Semester Examination				
Types	Theory: Written examination (50 Marks-1.5 Hrs)				
	i) MCQ 10 questions: $10 \times 1 = 10$				
	ii) Short answer 4 questions (out of 6): $4 \times 3 = 12$				
	iii) Short essay 2 questions (out of 3): $2 \times 7 = 14$				
	iv) Essay 1 question (out of 2): $1 \times 14 = 14$				
	Practical: (35 Marks)				
	i) Viva voce: 10 marks				
	ii) Writing procedure: 15 marks				
	iii) Certified lab report: 10 marks				

- F. A. Cotton and G. Wilkinson, *Advanced Inorganic Chemistry*, 6th Edn., Wiley India Pvt. Ltd., New Delhi, 2009 (Reprint).
- 2. J. E. Huheey, E. A. Keitler and R. L. Keitler, *Inorganic Chemistry–Principles of Structure and Reactivity*, 4th Edn., Pearson Education, New Delhi, 2013.
- 3. D. F. Shriver and P. Atkins, *Inorganic Chemistry*, 5th Edn. Oxford University Press, New York, 2010.
- 4. J. D. Lee, *Concise Inorganic Chemistry*, 5th Edn. Oxford University Press, New Delhi 2008.

- 5. R. Gopalan and V. Ramalingam, *Concise Coordination Chemistry*, 1st Edn., Vikas Publishing House, New Delhi, 2001.
- 6. B. D. Guptha and A. J. Elias *Basic Organometallic Chemistry, Concepts, Synthesis and Applications*, 2nd Edn. University Press 2013
- 7. I. Bertini, H. B. Gray, S. J. Lippard, and J. S. Valentine, *Bioinorganic chemistry*, University Science Books, 1994.
- 8. J. A. Cowan, Inorganic Biochemistry: An Introduction, VCH Publishing, 1993.
- 9. W. Kaim, B. Schwederski, B. *Bioinorganic chemistry: Inorganic Elements in the Chemistry of Life*, Wiley, 2006
- G.H. Jeffery, J. Bassett, J. Mendham, and R.C. Denney, Eds., *Vogel's Textbook of Quantitative Chemical Analysis*, 5th Edn., Longman Scientific and Technical, Harlow, 1989.

SUGGESTED READINGS

- 1. W. Pfennig, Principles of Inorganic chemistry. John Wiley & Sons, 2015.
- 2. N. N. Greenwood, A. Earnshaw, *Chemistry of the Elements*, Butterworth-Heinemann, 2012.
- 3. Catherine E. Housecroft, Alan G. Sharpe C. E. Barnes, *Inorganic Chemistry* 4th Edn. Journal of Chemical Education, 2003.
- 4. Synthesis of a Stable Compound with Fivefold Bonding Between Two Chromium(I) Centers. SCIENCE, 4 Nov 2005 844-847, 10.1126/science.1116789

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B Sc CHEMISTRY (Hons.)							
Course Name	Physical Chemistry- 3							
Type of Course	DSC	DSC						
Course Code	MCE6DSCCHE301	MCE6DSCCHE301						
Course Level	300-399							
Course	This course deals wit	th the princ	iples of sur	face chemist	ry, colloid	ls, chemical		
Summary	kinetics, electrochem	nistry, and o	electromoti	ve force.				
Semester	VI		Credits		4	Total Hours		
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others			
	3 1 75							
Pre-requisites, if any	Physical Chemistry	-I			1			

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No			
1	Assess different kinds of adsorption and adsorption isotherms.	Е	1,2			
2	Explain different types of colloidal systems, purification methods and properties of colloidal particles.	U	1,2			
3	Interpret nature of various chemical reactions and describe the kinetics of parallel and chain reactions.	An	1,2			
4	Make use of the principles of chemical kinetics to study the mechanism of homogeneous and heterogeneous catalysis.	А	1,2			
5	Describe the mechanism and factors affecting electrolytic conductance. Analyse properties of electrolytic conductance.	А	1,2			
6	Utilize conductance measurements in quantitative analysis.	А	1,2			
7	Categorise different electrodes based on their function and apply Nernst equation to calculate electrode potential.	А	1,2			
8	Apply the theoretical concepts of electrolytic conductance, adsorption and viscosity in practical experiments.	А	1, 2, 10			
*Remem	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs.	CO No.	
		Surface Chemistry And Colloidal State			
	1.1	Adsorption – types, adsorption of gases by solids – factors influencing adsorption, Freundlich adsorption isotherm, Langmuir adsorption isotherm –derivation of Langmuir adsorption isotherm.	5	1	
1	1.2	Types of solutions – true, colloid and suspensions, Classification of colloids: Lyophilic, lyophobic, macromolecular, multimolecular and associated colloids with examples, purification of colloids – ultra filtration and electrodialysis.	5	2	
	1.3	Properties of colloids: Brownian movement, Tyndall effect, electrophoresis. Electrical double layer and zeta potential. Coagulation of colloids, Hardy- Schulz rule. Micelles and critical micelle concentration, sedimentation and streaming potential.	5	2	
	Chemical Kinetics				
2	2.1	Arrhenius equation, concept of activation energy, Collision theory - kinetic theory of collisions, steric factor. Types of complex reactions - consecutive reactions, opposing reactions, parallel reactions, Chain reactions. Steady state approximation.	5	3	
	2.2	Catalysis: Homogeneous catalysis, enzyme catalysis – Heterogeneous catalysis – Surface catalysis, Elementary idea about Autocatalysis.	2	4	
		Electrochemistry and Electromotive Force			
	3.1	Ionic mobility: - relation with ionic conductance (with derivation), influence of temperature on ionic conductance, ionic conductance and viscosity – Walden's rule. Abnormal ionic conductance of H ⁺ and OH ⁻ .	5	5	
3	3.2	Debye-Hückel theory of strong electrolytes – the concept of ionic atmosphere, asymmetry and electrophoretic effect, Debye- Hückel-Onsager equation (no derivation). Activity, mean ionic activity coefficient, ionic strength, Debye-Hückel limiting law (no derivation).	5	5	

			[]	
	3.3	Applications of conductance measurements – determinations of degree of dissociation of weak electrolytes, determination of solubility and solubility products of sparingly soluble salts, conductometric titrations involving strong acid- strong base, weak acid- strong base, strong acidweak base, mixture of a strong acid and weak acid against strong base and precipitation titrations.	5	6
	3.4	Reversible cells - Daniel cell. Reference electrodes – Standard Hydrogen Electrode, Calomel electrode. Electrode potential – Electrochemical series. Representation of cells (IUPAC), Electrode reactions and cell reactions.	4	7
	3.5	Derivation of Nernst equation for electrode potential and cell potential, Calculation of equilibrium constant from EMF data. Applications of emf measurements –determination of pH using glass electrode. Potentiometric titrations- acid-base and redox reaction.	4	7
		Physical chemistry – 3 Practical		
4	4.1	 Viscosity – Determination of viscosity of sucrose/glycerol. Determination of composition of binary liquid mixture using viscometry (toluene-nitrobenzene). Determination of molecular weight of a polymer using viscometry (polystyrene in toluene) Viscometry: Verification of Kendalls equation-full experiment Conductometry: Determination of equivalent conductance of an electrolyte Determination of Onsager equation Adsorption: Verification of Freundlich and Langmuir adsorption isotherm - Charcoal Acetic acid or Charcoal-Oxalic acid system. Determination of concentration of given acid using the isotherm 	30	8

5

Teaching and Learning Approach	 Classroom Procedure (Mode of transaction) Lecture sessions, (chalk & board, PowerPoint presentation) Interactive sessions and simulations, Visual aids like videos and models to enhance understanding. Peer discussions. Laboratory experiments and hands-on training 				
	MODE OF ASSESSMENT				
	A. Continuous Comprehensive Assessment (CCA)				
	Theory (25 marks)				
	i) Pop quiz (5 marks)				
	ii) Assignments (5 marks)				
	iii) Test for each unit (MCQ/written) (15 Marks)				
	Practical (15 marks)				
Assessment	i) Lab involvement and skill				
Types	ii) Report of lab works done				
Types	B. End Semester Examination				
	Theory: Written examination (50 Marks- 1.5 Hrs)				
	i) MCQ 10 questions: $10 \ge 10$				
	ii) Short answer 4 questions (out of 6): $4 \times 3 = 12$				
	iii) Short essay 2 questions (out of 3): $2 \ge 7 = 14$				
	iv) Essay 1 question (out of 2): $1 \times 14 = 14$				
	Practical: (35 Marks- 1Hr.)				
	i) Viva voce: 10 marks				
	ii) Writing procedure: 15 marks				
	iii) Certified lab report: 10 marks				

- 1. S. Glasstone, An Introduction to Electrochemistry, East-West Press (Pvt.) Ltd. 2006.
- 2. G. Raj, Advanced Physical Chemistry, Goel publishing house, 2016.
- 3. Glasstone and Lewis, Elements of Physical Chemistry, Macmillan, 1967.

- 5. G. K. Vemulapalli, *Physical Chemistry*, Prentice-Hall of India Pvt. Ltd, 1996.
- 6. Puri, Sharma and Pathania, *Principles of Physical Chemistry*, 48th Edition, Vishal Publishing Company, 2020.
- 7. G. W. Castellan, *Physical Chemistry*, 4th Edn. Narosa Publishing House 2018.
- 8. K. L. Kapoor, *A Textbook of Physical chemistry*, Volume 5, 4th edition, Macmillan India Ltd., 2018.

^{4.} S. H. Marron and J. B. Lando, *Fundamentals of Physical Chemistry*, Macmillan Ltd, 1974.

Suggested Readings

- 1. P W Atkins, Physical Chemistry, Oxford University Press (12th Edition), 2020.
- 2. G. M. Barrow, *Physical Chemistry*, Tata McGraw-Hill (2007).
- 3. A. McQuarrie, J. D. Simon, *Physical Chemistry A molecular Approach*, Viva Books Pvt. Ltd., 2019.

Res Francisco	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B Sc CHEMISTRY	(Hons.)				
Course Name	Organic Chemistry	-4				
Type of Course	DSE					
Course Code	MCE6DSECHE30)				
Course Level	300-399					
	This course exam	ines the	structure a	und biolog	gical imp	ortance of
Course	polypeptides, amino	acids, pro	teins, nucle	ic acids, c	carbohydra	ates, natural
Summary	products, lipids, vita	mins, steroi	ds, and horn	nones. Prac	tical part o	of the course
	comprises extraction	of natural j	products.			
Semester	VI		Credits		4	Total
	T · A 1	Lecture	Tutorial	Practical	Others	Hours
Course Details	Learning Approach	3		1		75
Pre-requisites, if any						

COURSE OUTCOMES (CO)

Т

Г

CO No.	Expected Course Outcome	Learning Domains *	PO No.		
1	Predict the synthetic pathway of polypeptides and amino acids	А	1,2		
2	Identify the structure and biological importance of proteins and nucleic acids	А	1,2,3		
3	Examine the structure, properties, and industrial applications of carbohydrates	An	1,2		
4	Predict the interconversion of carbohydrates	А	1,2		
5	Identify the structure and properties of natural products and lipids	А	1,2		
6	Describe the classification structure and biological significance of vitamins, steroids, and hormones	U	1,2,3		
7	Make use of theory to synthesis and extract various components of oils and tea leaves	S	1,2,3,4, 10		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

٦

Module	Units	Course description	Hrs	CO No.
		Amino Acids, Peptides, Proteins and Nuclei	c Acids	à
	1.1	Amino Acids-Classification. Synthesis- Gabriel phthalimides synthesis, Strecker synthesis, Ionic properties and Ninhydrin reaction. Zwitterion structure and Isoelectric point.	4	1
1	1.2	Polypeptides - Synthesis - DCC method. Merrifield's solid phase peptide synthesis.	3	1
	1.3	Primary, secondary, tertiary and quaternary structure of proteins: α -helix and β -pleated sheets. Denaturation of proteins.	4	2
	1.4	Nucleic acids: Components of nucleic acids, nucleosides and nucleotides. Structure of DNA, Watson, and Crick model. Differences between DNA and RNA. Protein biosynthesis, Replication of DNA	4	2
		Carbohydrates		
	2.1	Classification of carbohydrates.	1	3
	2.2	Fischer and Haworth projections of glucose and fructose. Cyclic structure of glucose. Reactions of glucose and fructose - osazone formation, Tollen's reagent.	4	3
	2.3	Epimers, mutarotation and anomers.	3	3
2	2.4	Chain lengthening and chain shortening of aldoses - Kiliani-Fischer synthesis and Wohl degradation. Interconversion of aldoses and ketoses.	3	4
	2.5	Sucrose-Structure, reactions and uses of sucrose	1	3
	2.6	Structure and properties of starch and cellulose (elementary idea). Industrial applications of cellulose.	3	3
3	Na	atural products, Lipids, Vitamins, Steroids and	d Horn	iones

Content for Classroom transaction (Units)

		Natural products. Terpenoids: Classification,		
	3.1	isoprene rule. Essential oils - citral and geraniol –chemical properties and uses. Alkaloids: Classification based on source, isolation, general properties, physiological effects of coniine and nicotine.	4	5
	3.2	Lipids: Oils and fats, biological functions. Trans fat and their effect. Hydrogenation, Rancidity. Acid value, Saponification value, Iodine value and RM value. Soaps: Types and cleansing action. Synthetic detergents - Comparison between soaps and detergents.	5	5
	3.3	Vitamins: Classification, structure, biological functions and deficiency diseases of vitamins A, B ₁₂ and C.	2	6
	3.4	Steroids: Diels' hydrocarbon. Structure and functions of cholesterol. Elementary idea of HDL and LDL.	2	6
	3.5	Hormones: Biological functions of steroid hormone Oestrogen, peptide hormone - Insulin and amine hormone–Thyroxine. (Structure not required). Artificial hormone –Birth control pill.	2	6
		Organic Chemistry – 4 Practical		
4	4.1	 Extraction of caffeine from tea leaves/tea dust powder Extraction of volatile oils by Clevenger's method (Hydro distillation method). Solvent extraction -isolation of lycopene from tomato Determination of saponification value of the fat and oils by taking any real sample Determination of acid value of the fat and oils by taking any real sample 	30	7
5		Teacher-Specific Content		

Teaching and Learning Approach	 Classroom Procedure (Mode of transaction) Lecture (chalk & board, PowerPoint presentation) Group discussion Peer teaching Demonstration of experiments Hands-on training
Assessment Types	MODE OF ASSESSMENTA. Continuous Comprehensive Assessment (CCA)Theory (25 marks)i) Quiz (5 marks)ii) Assignment (5 marks)iii) Class test (15 Marks)Practical (15 marks)i) Lab involvement and skillii) Report of lab works doneB. End Semester examinationTheory: Written examination (50 Marks- 1.5 Hrs.)i) MCQ 10 questions: 10 x 1 = 10ii) Short answer 4 questions (out of 6): 4 x 3 =12iii) Short essay 2 questions (out of 3): 2 x 7 = 14iv) Essay 1 question (out of 2): 1 x 14 = 14Practical: (35 Marks- 1 Hr.)i) Viva voce: 10 marksii) Writing procedure: 15 marksiii) Certified lab report: 10 marks

- 1. Clayden, J; Greeves, N; Warren, S. Organic Chemistry; Oxford University Press, 2012.
- 2. Finar, I. L. *Organic Chemistry*; Vol. 1& 2; Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 3. McMurry, J. Organic Chemistry; 7th Edn. Cengage Learning, 2013.
- 4. Morrison, R.T.; Boyd, R.N.; Bhattacharjee, S.K. Organic Chemistry; 7th Edn.; Dorling
- 5. Kindersley (India) Pvt. Ltd (Pearson Education), 2011.
- 6. Jain, M. K.; Sharma, S.C. Modern Organic Chemistry; Vishal Publishing Co., 2010.
- 7. Bahl, A.; Bahl, B.S. Advanced Organic Chemistry; S. Chand, 2010.
- 8. Graham Solomon T.W.; Fryhle, C.B.; Snyder, S.A. Organic Chemistry; Wiley, 2014.
- 9. Carey, F. A.; Sundberg, R. J.; Advanced Organic Chemistry: Part A: Structure and Mechanisms; Springer Science & Business Media, 2007.
- 10. Norman, R. O. C.; Coxon, J. M. Principles of Organic Synthesis; Routledge, 2017.
- 11. Pine, S. H. Organic Chemistry; Tata McGraw-Hill, 2014.
- 12. Furniss, B. S.; Hannaford, A. J.; Rogers, V.; Smith, P. W. G.; Tatchell, A. R. Vogel's *Textbook of Practical Organic Chemistry*; 5th Edn.; Pearson Education, 2005.

A DESTRUCTION	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B Sc CHEMIS	TRY (Hon	s.)			
Course Name	Rubber Techno	Rubber Technology				
Type of Course	DSE					
Course Code	MCE6DSECH	E301				
Course Level	300-399					
Course Summary	This course exp applications	lores the ba	asic aspects of	of rubber its	s modifica	tions and
Semester	VI		Credits		4	Total
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours
	Approach	3		1		75
Pre-requisites, if any						

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No			
1	Understand the basics of rubber and latex chemistry	U	1,2,3			
2	Apply knowledge on different aspect of Vulcanization and Compounding in rubber	А	1,2,3			
4	Understand the different application of rubber in different sectors	U	1,2,3			
5	Analyse physical and chemical properties of latex and dry rubber	S	1,2,3,10			
*Remem	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Module	Units	Course description	Hrs.	CO No.			
	Natural rubber and latex						
	1.1	Origin – Natural Rubber Latex, tapping, processing, properties and applications – Conversion of Latex into dry rubber – Properties of dry rubber – Classification based on technical specifications Natural rubber, isoprene rubber, butyl rubber, nitrile rubber, chloroprene rubber and styrenebutadiene rubber	8	1			
1	1.2	Definition of latex, classification, latex particle size and distribution, stability and destabilization of lattices, comparison between lattices and polymer solution Natural rubber latex – origin, tapping, bulking and preservation, composition of field latex, properties, preservation, methods of concentrating latex - creaming, centrifuging, & evaporation – Specification and testing- (national and ISO) for latex grades (ASTM D 1076).	7	1			
		Vulcanization and Compounding					
2	2.1	Theory and mechanism of sulphur and non- sulphur vulcanization (with and without accelerators), rheo-curve of compounded rubber, properties of vulcanized rubber - Vulcanizing ingredients & their sequence of mixing: Activators and accelerators: mechanisms of action. Other cure systems based on metal oxides, peroxides, etc. retarders, inhibitors anti-reversion agents.	4	2			
	2.2	Fillers: Carbon black-Its preparation, structure, properties and their effect on rubber properties. Silica fillers & coupling agents. Other fillers: Clay, calcium carbonate, titania etc. Nanofillers: Reinforcement by filler: Reinforcement, factors influencing elastomers reinforcement, fillers characteristics, main effects of fillers on vulcanizate properties, influence of fillers characteristics on the cross-linking process, filler incorporation, the role	6	2			

Content for Classroom transaction (Units)

I [
		of bound rubber, reinforcement and crosslink density.		
	2.3	Processing aids, plasticizers, process additives, release agents, other additives like colourants, blowing agents, factice, fire retardants, antistatic agents, deodorants and reodorants, biocides and fungicides etc. Anti-degradants: Introduction, autoxidation of hydrocarbon polymers, amine & phenolic antioxidants & other types, anti-zonants, Prevention of ozone attack with the use of waxes & saturated polymer for ozone protection.	5	2
		Application of Rubber in Different Sectors		
	3.1	 Functions of tyres– Role of rubber and unique properties of rubbers for the applications. Tyre constructions – generic design features and materials. Tubeless tyres – comparison. Mechanics of rubber – Cord composites. Inflation pressure – Contact area, tyre deflections – Design factors and principles. Classifications of tyres – Essential design criteria. Rolling resistance, friction, mechanical loss on tyre behaviour. Tyre endurance and life related properties 	8	3
3	3.2	Overview of rubber's use in various industrial and consumer products such as hoses, belts, gaskets, and seals, as well as in footwear, sports equipment, and household items. Medical Devices: Examination of rubber's critical role in healthcare, including in the manufacture of gloves, catheters, contraceptives, and various medical devices where flexibility and biocompatibility are essential. Aerospace Industry: Discussion on the use of rubber in the aerospace industry, such as in seals, gaskets, and fuel tank linings, highlighting rubber's resistance to extreme temperatures and conditions.	7	3
4		Rubber Technology Practicals		

		A. Latex Analysis		
		1. Determination of total solid content of latex		
		2. Determination of alkalinity of latex		
		3. Determination of dry rubber content of latex		
		4. Determination of volatile fatty acid number of		
		latex		
		5. Determination of viscosity of latex		
		6. Determination of KOH number		
		7. Determination of coagulum		
	4.1	8. Determination of sludge	30	4
	7.1	9. Determination of mechanical stability time	50	т
		(MST)		
		10. Determination of density		
		B. Dry Rubber Analysis		
		1. Determination of dirt		
		2. Determination of Po and PRI		
		3. Determination of ash		
		4. Determination of nitrogen		
		5. Determination of volatile matter		
		C. Mixing behaviour of NR on two roll mill		
		Teacher Specific Content		
5				

	Classroom Procedure (Mode of transaction)
Teaching and	 Lectures (Chalk & Board, Multimedia presentations)
Learning	 Group Discussions
Approach	• Case studies
	• Quizzes
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
	Theory (25 marks)
Assessment	i) Quiz (5 marks)
Types	ii) Assignment – (5 marks)
Types	iii) Problem based test - Open book (5marks)
	iv) Written exam (10 marks)
	Practicals (15 marks)
	i) Lab involvement and skill
	ii) Report of lab works done

B	. End Semester examination
Г	'heory: Written Examination theory (50 Marks- 1.5 Hrs)
i	MCQ $- 10$ questions: $10 \ge 10$
i	i) Short answer 4 questions (out of 6): $4 \times 3 = 12$
i	ii) Long answer 2 questions (out of 3): 2 x 7 =14
i	v) Essay type 1 question (out of 2): 1 x 14 = 14
P	racticals (35 Marks- 1 Hr)
i) Viva voce: 10 marks
i	i) Writing procedure: 15 marks
i	iii) Certified lab report: 10 marks

- 1. J.A. Brydson, Rubber Chemistry, Allied science Publishers, London, 1978.
- 2. M. Morton, Rubber Technology, Chapman Hall, 1995.
- 3. R.C. Klingender, Handbook of speciality elastomers, CRC Press, 2008.
- 4. J.K. Setright, Automobile Tyre, Chapman and Hall, 1972.
- 5. S. Blow, Hand Book of Rubber Technology, Hanser Gardner, 2000.
- 6. J. M. Martin and W.K. Smith, Handbook of Rubber Technology, CBS Publisher 2007
- 7. J. E. Mark, B. Erman, M. Roland, *The Science and Technology of Rubber*, Academic Press, 2013
- 8. J. Urbanski, W. Czerwinski, K. Janicka, *Handbook for analysis of synthetic polymer and plastics*, Ellis Harwood Ltd. 1977
- 9. W.C. Wake, *Analysis of Rubbers and Rubber like Polymers*, 2nd Edn, Wiley Interscience, 1969.

Rest gange	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B Sc CHEMI	STRY (Hoi	ıs.)			
Course Name	Industrial Inc	organic Ch	emistry an	d Nuclear Chem	nistry	
Type of Course	DSE					
Course Code	MCE6DSEC	HE302				
Course Level	300-399					
Course Summary	understanding	of the inc	lustrial pro	vide students w ocesses involved bles governing nu	in the pro	oduction of
Semester	VI		Credi	ts	4	Total
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours
	Approach	4				60
Pre-requisites, if any		1	1			1

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No				
1	Analyse different industrially important inorganic materials.	An	1,2, 6				
2	Evaluate the important processes involved in metallurgy	Е	1,2 ,6				
3	Explain the catalytic properties of inorganic materials	Е	1,2,6				
4	Illustrate the basics of chemical explosives and rocket propellants	U	1,2,6,10				
5	Analyse different aspects of nuclear chemistry, its applications and associated problems.	An	1,2,6,10				
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

Content for	Classroom	transaction	(Units)
--------------------	------------------	-------------	---------

Module	Units	Course description	Hrs	CO No.
		Glass, Ceramic and Cements		
	1.1	Glass- Glassy state and its properties, classification (silicate and non-silicate glasses). Manufacture and processing of glass. Composition and properties of: Soda lime glass, lead glass, armoured glass, safety glass, borosilicate glass, fluorosilicate glass, coloured glass and photosensitive glass.	5	1
1	1.2	Ceramics -Important clays and feldspar, ceramic, their types and manufacture. High technology ceramics and their applications. Bio-ceramics.	5	1
	1.3	Cement- Classification of cement, ingredients and their role, manufacture of cement and the setting process, quick setting cements. Bio-cement- Living building materials	5	1
		Metallurgy	_	
	2.1	Minerals in India, mineral processing, chief modes of occurrence of metals based on standard electrode potentials. Ellingham diagrams for reduction of metal oxides using carbon and carbon monoxide as reducing agents.	5	2
2	2.2	Electrolytic reduction, hydrometallurgy with reference to cyanide process for silver and gold. Methods of purification of metals: electrolytic process, Van Arkel-de Boer process and Mond's process, Zone refining.	7	2
	2.3	Preparation of metals (ferrous and nonferrous) and ultrapure metals for semiconductor technology.	3	2
	Introd	luction to Chemical Explosives, rocket propellants an	d catal	ysis
3	3.1	General principles and properties of catalysts, homogenous catalysis, and heterogenous catalysis (catalytic steps and examples), their industrial applications, deactivation, or regeneration of catalysts. Phase transfer catalysts, application of zeolites and metal organic frameworks as catalysts.	7	3

	3.2	Origin of explosive properties in inorganic compounds. Categorisation of explosives (low explosives – high explosives – primary, secondary, intermediary, tertiary). Explosive properties of Gun powder, lead azide, TNT, PETN, cyclonite (RDX).	6	4
	3.3	A Brief History and introduction of chemical rocket propellants. Liquid propellants, ecofriendly propellants and solid propellants	2	4
		Nuclear Chemistry		
	4.1	Nucleus and its classification, nuclear forces, nuclear stability, binding energy, nuclear models. Radioactive decay, radioactive elements, general characteristics of radioactive decay, decay kinetics - decay constant, halflife, mean life period, units of radioactivity.	5	5
4	4.2	Measurement of radioactivity, Geiger-Muller detector, scintillation detectors, nuclear reactor: classification of reactors, uranium reactor, breeder reactor. Nuclear reactors in India (Brief Idea). Nuclear fusion and stellar energy. Units of radiation energy (Rad, Gray, Rontgen)	5	5
	4.3	Nuclear pollution and radiological safety: interaction of radiation with matter, radiolysis of water, radiation dosimetry. Radioactive isotopes and their applications, isotopic dilution analysis, neutron activation analysis, disposal of nuclear waste, nuclear disaster (nuclear accidents–case study).	5	5
5		Teacher-Specific content	•	
5				

Teaching and Learning Approach	 Classroom Procedure (Mode of transaction) Lecture (chalk & board, PowerPoint presentation) Group discussion Peer teaching Industrial Visit/ visit to a nuclear Reactor (IGCAR/KNPP etc.)
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) : Theory (30 marks) i) Quiz (7 marks) ii) Class test for each unit (MCQ/written) (23 Marks)

B. End Semester Examination

Theory: Written examination (70 Marks- 2 Hrs)

- i) Short answer 5 questions (out of 6): $5 \ge 4 = 20$
- ii) Short essay 5 questions (out of 7): $5 \times 7 = 35$
- iii) Essay 1 question (out of 2): $1 \times 15 = 15$

- 1. Stocchi, Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK, 1990
- 2. R. M. Felder and R. W. Rousseau, *Elementary Principles of Chemical Processes*, Wiley Publishers,
- 3. New Delhi, 2004
- 4. J. A. Kent, *Riegel's Handbook of Industrial Chemistry*, CBS Publishers, New Delhi, 1997.
- 5. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, *Introduction to Ceramics*, Wiley Publishers, New Delhi, 2012.
- 6. P. C. Jain and M. Jain, Engineering Chemistry, Dhanpat Rai & Sons, Delhi, 2015.
- 7. R. Gopalan, D. Venkappayya, S. Nagarajan, *Engineering Chemistry*, 4th Edn.Vikas Publications, New Delhi.
- 8. K. Sharma, Engineering Chemistry, Goel Publishing House, Meerut, 2000.
- 9. S.F. Sarner, Propellant Chemistry, Reinhold Publishing Co., 1966
- 10. T. Urbanski, Chemistry and Technology of Explosives Vol.I to IV, Pergamon Press, 1984
- 11. Harvey, B. G. Introduction to Nuclear Physics & Chemistry, Prentice Hall, 2012.
- 12. Overman R. T, Basic concept of Nuclear Chemistry, Chapman & Hall, 1963.
- 13. N. Nesmeyanov, Radiochemistry, MIR Publication, Moscow.
- 14. J. W. T. Spinks, R.J. Woods R. J. An Introduction to Radiation Chemistry, 3rd Edn. Wiley-Blackwell, 1990.
- 15. H.J. Arnikar, *Essentials of Nuclear Chemistry*, 4th Edn. New Age International Private Limited, 2011.

Received and the second	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	B Sc CHEMISTRY	(Hons.)					
Course Name	Spectroscopic Meth	ods of Cl	nemical A	nalysis			
Type of Course	DSE	DSE					
Course Code	MCE6DSECHE303	5					
Course Level	300-399						
Course Summary	This course covers v instrumentation and	-	-	ic methods	, includin	g principles,	
Semester	VI		Credits		4	Total	
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours	
		4		0		60	
Pre-requisites, if any							

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No.
1	Discuss instrumentation in IR, NMR and electronic spectroscopic techniques.	U	1,2
2	Describe the fundamental principles of Raman, EPR, NQR, Mossbauer, Fluorescence and X-ray spectroscopic techniques in chemical analysis.	U	1,2
3	Evaluate the advantages and limitations of Raman spectroscopy, EPR spectroscopy and NQR spectroscopy in different scientific and industrial applications.	Е	1,2,10
4	Assess the utility of Mössbauer spectroscopy, Fluorescence spectroscopy and X-ray spectroscopy in various fields.	Е	1,2
5	Describe the fundamental principles of AAS, AES and FES.	U	1,2
6	Compare and contrast the advantages and limitations of AAS, AES, and FES in elemental analysis.	U	1,2
*R	Cemember (K), Understand (U), Apply (A), Analyse (An), Evalua Skill (S), Interest (I) and Appreciation (Ap)	nte (E), Creat	e (C),

Content for	Classroom	transaction	(Units)
--------------------	-----------	-------------	---------

Module	Units	Course description	Hrs	CO No.
	Instr	umentation in Electronic, IR and NMR Spectroscopic Te	echniqu	ies
1	1.1	Instrumentation in UV/ Visible Spectroscopy: Light sources, wavelength dispersion (gratings, prisms, interference filters, lasers). Sample holders, detection of signals (photocells, photo multipliers, and diode arrays), Sensitivity and S/N ratio. Single and double beam instruments.	5	1
1	1.2	Instrumentation in IR Spectroscopy: Light sources, infrared detectors, sample preparation techniques; liquids, solids. Dispersive I R spectrometer. (FTIR-basic idea only)	5	1
	1.3	Instrumentation in NMR Spectroscopy: Magnet: Types of magnets used in NMR (permanent, resistive, superconducting), Probes and RF coils. Sample handling and temperature control.	5	1
		Raman and EPR Spectroscopic Techniques		
2	2.1	Raman Spectroscopy: Scattering of light, polarizability and classical theory of Raman spectrum, rotational and vibrational Raman spectrum, Stokes and anti-Stokes lines: their intensity difference, complementarities of Raman and IR spectra, mutual exclusion principle, applications of Raman spectroscopy.	8	2,3
	2.2	EPR Spectroscopy: Electron spin in molecules, interaction with magnetic field, g factor, factors affecting g values, fine structure and hyperfine structure, Kramers' degeneracy, applications of ESR spectroscopy.	7	2,3
]	NQR, Mossbauer and Fluorescence Spectroscopic techni	ques	
	3.1	Theory and important applications of NQR Spectroscopy.	3	2,3
3	3.2	Mossbauer Spectroscopy: Principle, Doppler effect, recording of spectrum, chemical shift, factors determining chemical shift, application to complexes of iron.	6	2,4
	3.3	Fluorescence Spectroscopy. Instrumentation: light source, monochromator, optical filters, photomultiplier tube, polarizers, application- fluorescence sensing.	6	2,4

		Atomic Spectroscopic Techniques		
4	4.1	Atomic absorption spectroscopy (AAS), principle of AAS, absorption of radiant energy by atoms, measurement of atomic absorption, instrumentation: Radiation Sources, Atomizers, Detectors. Analytical Applications of AAS.	5	5,6
	4.2	Atomic emission spectroscopy (AES), advantages and disadvantages of AES, origin of spectra, principle and instrumentation, applications.	5	5,6
	4.3	Flame emission spectroscopy (FES), flames and flame temperature, spectra of metals in flame, instrumentation, applications.	5	5,6
5		Teacher Specific Content		

	Classroom Procedure (Mode of transaction)		
Teaching and Learning Approach Learning: Approach Learning: Lecture sessions, interactive sessions including discussion demonstrations, to engage students actively and visual and presentations and videos to enhance understanding. Utilize case from various scientific fields (like environmental pharmaceuticals, forensics) to illustrate how spectroscopy is practically. Form study groups to discuss concepts, c			
	approaches, and explain concepts to one another.		
Assessment Types	 MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) (30 Marks) i) Assignments: 5 marks ii) MCQ: 5 marks iii) Class test: 15 marks iv) Viva: 5 marks 		
	B. End Semester examination (70 Marks- 2Hrs)		
	 i) Short answer 5 questions (out of 7): 5 x 4 =20 ii) Short essay 5 questions (out of 7): 5 x 7 = 35 		
iii) Essay 1 question (out of 2): $1 \ge 15$			

- 1. J W. Robinson, E M S Frame, and G M. Frame II, *Instrumental Analytical Chemistry*, CRC Press, 2021.
- 2. F A Settle, *Handbook of Instrumental Techniques for Analytical Chemistry*, Prentice Hall, 1997.
- 3. J W. Robinson, E M S Frame and G M. Frame II, *Undergraduate Instrumental Analysis*, 7th Edn. CRC Press, 2014.

- 4. D A. Skoog, D M. West, F. J Holler and S R. Crouch, *Fundamentals of Analytical Chemistry*, 9th Edn. Brooks/Cole, 2014.
- 5. C N Banwell, E M McCash, *Fundamentals of Molecular Spectroscopy*, 4th Edn. McGrawHill Publishing Company, 2017.
- 6. Aruldhas, *Molecular Structure and Spectroscopy*, 2nd Edn. Prentice Hall India, 2007.
- 7. D A. Skoog, F. J Holler and S R. Crouch, *Principles of Instrumental Analysis*, 7th Edn. Brooks/Cole, 2020.
- 8. P. Gupta, S. S. Das and N. B. Singh, Spectroscopy, Jenny Stanford Publishing, 2023.

Photos and a second	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B Sc CHEMIST	RY (Hons.	.)			
Course Name	Fundamentals of	f Biochem	istry			
Type of Course	DSE					
Course Code	MCE6DSECHE304					
Course Level	300-399					
Course Summary	This course covers structure and biological functions of amino acids, proteins, enzymes, carbohydrates, nucleic acids and lipids and general features of metabolism.			-		
Semester	VI		Credits		4	
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Total Hours
	- approuen	4				60
Pre-requisites, if any						

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No.	
1	Explain fundamental features of biochemistry such as	U	1,2	
	functions of subcellular organelles, membranes and membrane transport,			
2	Analyse the classification, properties and functions of amino acids, proteins, enzymes, lipids and carbohydrates.	An	1,2	
3	Describe the catalytic activity of enzymes and enzyme inhibition	U	1,2	
4	Examine the functions of DNA and RNA	Е	1,2	
5	Analyse various metabolic pathways and phases.	An	1,2	
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)			

Module	Units Course description			CO No.
		Foundations of Biochemistry		
	1.1	Introduction to biochemistry: scope of biochemistry, historical development and significance	2	1
1	1.2	Subcellular organelles: nucleus, endoplasmic reticulum, golgi apparatus, lysosomes, peroxisomes and mitochondria. Marker enzymes.	5	1
	1.3	Plasma membrane and membrane proteins.	2	1
	1.4	Membrane transport: active and passive transports and pumps. Ion channels, ligand-gated channels, voltage- gated channels, ionophores. Sodium pump and calcium pump.	6	1
		Amino acids and Proteins		
	2.1	Amino acids: Classification-based on structure, side chain, metabolism and nutritional requirements. Physical properties of amino acids, isoelectric point, optical activity and peptide bond formation. Colour reactions of amino acids and proteins- ninhydrin, biuret and xanthoproteic tests.	6	2
2	2.2	Peptides and proteins: Primary structure and numbering of amino acids in proteins. Secondary structure- alpha helix and beta pleated sheets. Tertiary structure- relationship between structure and function of proteins. Quaternary structure of proteins.	5	2
	2.3	Classification of Proteins based on function, composition, shape and nutritional value.	2	2
	2.4	Physical properties and precipitation reactions of proteins.Quantitative estimation of proteins by Kjeldahl's method.	2	2
		Enzymes		
3	3.1	 Enzymes; Characteristics, six major classes of enzymes, IUMB system of classification of enzymes- explanation with one example. Coenzymes- Classification, nicotinamide adenine dinucleotide (NAD⁺) and coenzyme A. Cofactors. Metallo-enzymes. 	6	2

Content for Classroom transaction (Units)

	3.2	Catalytic power and specificity of enzymes. Mode of action of enzymes- active site, substrate binding, lock and key principle, induced-fit model, entropy effect and stabilisation of transition state. Coupled reactions.	7	3
	3.3	Enzyme inhibition- types.	2	3
		Carbohydrates, Nucleic acids, Lipids and Metaboli	sm	
	4.1	Carbohydrates- Biological functions of mono, di and polysaccharides. Regulation of Blood Glucose; insulin and diabetes mellitus.	4	2
4	4.2	Nucleotides and nucleic acids, DNA and RNA, functions of DNA and RNA.	4	4
	4.2	Lipids- classification of lipids and fatty acids and functions of lipids.	3	2
	4.3	Metabolism: types of metabolic pathways, phases of metabolism, metabolic profile of brain, skeletal muscles and liver.	4	5
_		Teacher Specific Content		
5				

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture sessions, interactive sessions including discussions and demonstrations, to engage students actively and visual aids like presentations and videos to enhance understanding.		
Assessment Types	 MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) (30 Marks) i) Assignments: 5 marks ii) MCQ: 5 marks iii) Class test: 15 marks iv) Viva: 5 marks 		
	 B. End Semester Examination (70 Marks- 2 Hrs) i) Short answer 5 questions (out of 6): 5 x 4 = 20 ii) Short essay 5 questions (out of 7): 5 x 7 = 35 iii)Essay 1 question (out of 2): 1 x 15 = 15 		

- 1. D M Vasudevan, S Sreekumari, *Textbook of Biochemistry for Medical Students*, Jaypee Brothers Medical Publishers, 2023.
- 2. Nelson, D. L. & Cox, M. M. Lehninger's Principles of Biochemistry, 7th Edn. W. H. Freeman., 2021.

- 3. Berg, J.M., Tymoczko, J. L. and Stryer, L. *Biochemistry*. 9th Edn. W.H. Freeman and Co., 2019.
- 4. U. Satyanarayana, U. Chakrapani. Biochemistry. 6th Edn. Elsevier India, 2021.
- 5. P.J. Kennelly, Harper's Illustrated Biochemistry, 32 Edition, McGraw Hill, 2022.
- 6. R Singh, R Goyal, Lippincott's Illustrated Reviews Biochemistry, 2020.
- 7. P Naik, *Biochemistry*, Jaypee Brothers Medical Publishers, 2022.
- 8. H. P. Gajera, S. V. Patel, B. A. Golakiya, Fundamentals of Biochemistry, IBDC, 2000.

Suggested Readings

1. Murray, R.K., Granner, D.K., Mayes, P.A. and Rodwell, V.W. *Harper's Illustrated Biochemistry*. XXVIII edition. Lange Medical Books/ McGraw-Hill, 2009.

Annyganine	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B Sc CHEMISTRY (B Sc CHEMISTRY (Hons.)				
Course Name	Data Analysis using	Python an	d Soft skill	ls		
Type of Course	SEC					
Course Code	MCE6SECCHE300					
Course Level	300- 399					
Course Summary	This interdisciplinary scientific investigation context of chemistry.	-		1	-	
Semester	VI	Credits 3 Total			Total	
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours
		3				45
Pre-requisites, if					1	·
any						

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No.	
1	Apply scientific methods for designing experiments systematically	А	1,2,3	
2	Interpret data using various statistical tools.	U	1,2,3	
3	Understand the basics of Python	U	1,2,3	
4	Utilize Python in data visualization and analysis	А	1,2,3	
5	Develop ideas in chemistry that can be grown into startups	С	4,5,9,10	
6	Develop comprehensive scientific communication skills	С	4,10	
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)			

Content for Classroom transactions (Units)

Module	Units	Course description	Hrs	CO No.
		Data Analysis		
	1.1	The Investigative Approach: Making and Recording Measurements. SI Units and their use. Scientific method and design of experiments.	3	1
1	1.2	Analysis and Presentation of Data : Descriptive statistics. Choosing and using statistical tests.	4	1,2
	1.3	Chemometrics . Correlation and regression, Curve fitting, fitting of linear equations, simple linear cases, weighted linear case, analysis of residuals, General polynomial fitting, linearizing transformations, exponential function fit, r, and its abuse. Basic aspects of multiple linear regression analysis.	8	2
		Introduction to Python		
2	2.1	Introduction to Python Programming Defining numbers, Variables, Strings, Lists and Loops, Comparisons of flow control, functions, data structures, file input/output, Basic Numppy	7	3
	2.2	Data Visualization with Python Matplotlib, drawing line plots with a single line, line plots with multiple line, adding legend, drawing bar plots, scatter plots, plot title and axis labels. Saving plots	8	4
		Soft skills for chemists		
3	3.1	 Presentation on a hypothetical start-up idea incorporating chemistry background. Review of recent research articles (writing) Poster design and presentation skills Plotting of data using different software (excel, origin etc.) Fitting of data 	15	5,6
4		Teacher-Specific content	·	
4				

Teaching and	Classroom Procedure (Mode of transaction)
Learning	• Lectures
8	 Demonstrations
Approach	 Discussions

	 Hands-on training
	 Seminars
	• Presentations and assignments.
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA) (25 Marks)
	i) Presentation - 5marks
Assessment	ii) writing skills - 5 marks
Types	iii)Data analysis skill - 5 marks
	iv) Examination-10 marks
	A. End Semester examination (50 marks- 1.5 hrs)
	i) Short answer questions -20 marks (2 marks each -10 out of 12 nos.)
	ii) Long answer questions – 30 marks (5 marks each – 6 out of 8 nos.)

- 1. Hibbert, D. B. & Gooding, J. J. (2006) *Data analysis for chemistry*. Oxford University Press.
- 2. D. Topping, J. (1984) *Errors of observation and their treatment*. Fourth Ed., Chapman Hall, London.
- 3. Harris, D. C. Quantitative chemical analysis. 6th Ed., Freeman (2007) Chapters 3-5.
- 4. Python Crash Course- A Hands-on, Project Based Introduction to Programming, Eric Matthes, no starch Press, 2016 edition
- 5. Open access Python tutorials
- 6. Christian Hill. (2020). Python for Chemists. Cambridge University Press
- 7. Bindner, Donald & Erickson, Martin. (2011). *A Student's Guide to the Study, Practice, and Tools of Modern Mathematics*. CRC Press, Taylor & Francis Group, LLC.
- 8. Lamport, Leslie (1994). LaTeX: A Document Preparation System, User's Guide and Reference Manual (2nd ed.). Pearson Education. Indian Reprint.

Rent Hanning	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	B Sc CHEMISTR	Y (Hons.)					
Course Name	Intellectual Prope	Intellectual Property Rights					
Type of Course	VAC						
Course Code	MCE6VACCHE300						
Course Level	300-399	300-399					
Course Summary	This course covers patents, trademarks		-	tellectual pro	pperty law, in	ncluding	
Semester	VI		Credits		3	Total	
Course Details	Learning Approach	Lecture	Tutorial	Practical	Others	Hours	
		3				45	
Pre-requisites, if any		1					

Г

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	Analyse the fundamental principles of intellectual property rights, distinguishing between patents, copyrights, and trademarks.	An	1,2
2	Interpret the ethical and legal implications of intellectual property infringement in diverse contexts.	U	1,2
3	Evaluate the criteria for patentability, including novelty, nonobviousness, and utility.	Е	1,2
4	Identify the fundamental concepts and legal framework surrounding trademarks.	U	1,2
5	Analyse and interpret the fundamental principles and theories underlying copyright law.	An	1,2
*Ren	nember (K), Understand (U), Apply (A), Analyse (An), Eva Skill (S), Interest (I) and Appreciation (Ap		e (C),

٦

Module	Units	Course description	Hrs	CO No.
		Introduction to IPR		
1	1.1	Meaning of property, origin, nature, meaning of intellectual property rights	4	1
	1.2	Kinds of Intellectual property rights—copy right, patent, trade mark, trade secret and trade dress, design, layout design, geographical indication, plant varieties and traditional knowledge.	7	1, 2, 4
	1.3	Significance of IPR and their protection	3	1,2
		International Organizations & Treaties		
	2.1	Paris Convention for the Protection of Industrial Property, Patent Cooperation Treaty (PCT), World Trade Organization (WTO)	5	1,2,3
2	2.2	Trade Related Aspects of Intellectual Property TRIPS, TRIMS, WIPO	5	1,2,3
	2.3	Budapest treaty on the international recognition of the deposit of microorganisms for the purpose of patent procedure, international convention for the protection of new varieties of plants (UPOV)	5	1,2,3
		Patent Rights And Copyrights		
3	3.1	Types of patents, inventions which are not patentable, the patent's act 1970- patentable invention, registration procedure, rights and duties of patentee, assignment and licence, restoration of lapsed patents, surrender and revocation of patents, infringement, remedies & penalties.	10	1,2,3
	3.2	Types of copyright, registration procedure, assignment & licence, terms of copyright, piracy, infringement, remedies, copy rights with special reference to software	5	1,2,5
		Teacher-Specific content		
4				

Teaching and Learning ApproachClassroom Procedure (Mode of transaction) Lectures, discussions, group activities and presentations by students.

	MODE OF ASSESSMENT					
	A. Continuous Comprehensive Assessment (CCA) (25 Marks)					
	i) Assignments: 5 marks					
Assessment	ii) Examination: 10 marks					
Types	iii) Viva: 5 marks					
	iv) Classroom participation (participation in class activities) : 5 n					
	B. End Semester Examination (50 Marks- 1.5 Hrs)					
	i) MCQ 9 questions: $9 \ge 1 = 9$					
	ii) Short answer 5 questions (out of 7): $5 \ge 4 = 20$					
	iii) Short essay 3 questions (out of 5): $3 \times 7 = 21$					

- 1. G.B. Reddy, Intellectual Property Rights and the Law, Gogia Law Agency, 2017.
- 2. B.L. Wadehra, Law relating to Intellectual Property, Universal Law Publishing Co, 2017.
- 3. P. Narayanan, Intellectual Property Law, Eastern Law House, 3rd Edn. 2023.
- 4. S.R. Myneni, Law of Intellectual Property, Asian Law House, 2019.
- 5. R K Singh. A Banerjee, Intellectual Property Rights, Gogia Law Agency, 2022.
- 6. V K Ahuja, Law Relating To Intellectual Property Rights, LexisNexis, 2017.

Received and the second	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B Sc CHEMIS	TRY (Hons	.)			
Course Name	Research Meth	nodology fo	r Chemistry			
Type of Course	VAC					
Course Code	MCE6VACCHE301					
Course Level	300-399					
Course Summary	This course covers a wide range of topics aimed at preparing students to conduct a scientific project in chemistry. The aim is to equip students with the skills and knowledge necessary to design, conduct, analyse, and communicate scientific research effectively in the field of chemistry.					
Semester	VI	Credits 3 Total				
Course	Learning	Lecture	Tutorial	Practical	Others	Hours
Details	Approach	3				45
Pre-requisites, if any						

CO No.	Expected Course Outcome	Learning Domains *	PO No			
1	Apply the tools for literature survey in chemistry in doing and reporting a chemistry project.	А	1,2			
2	Describe the methodology of scientific research.	U	1,2			
3	Apply the knowledge of scientific writing in preparing a project report.	А	1,2			
4	Discuss the ethical aspects of chemistry research.	U	1,2			
5	Apply the basic principles of research methodology in the conducting, reporting and presenting a chemistry project.	А	1,2			
*Ren	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Module	Units	Course description	Hrs	CO No.	
		Literature Survey			
1	1.1	Print: Sources of information: Primary, secondary, tertiary sources; Journals: Journal abbreviations, abstracts, current titles, reviews, monographs, dictionaries, text-books, current contents, Introduction to Chemical Abstracts, Subject Index, Substance Index, Author Index, Formula Index, and other Indices with examples	6	1	
	1.2	Digital: Web resources, E-journals, Journal access, TOC alerts, Hot articles, Citation index, Impact factor, H- index, E-consortium, UGC infonet, E-books, Internet discussion groups and communities, Blogs, Preprint servers, Search engines, Scirus, Google Scholar, ChemIndustry, Wiki- Databases, ChemSpider, Science Direct, Beilstein, SciFinder, Scopus. Information Technology and Library Resources: The Internet and World Wide Web. Internet resources for chemistry. Finding and citing published information.	9	1	
		Methods of Scientific Research and Writing Scientific	ic Papers		
	2.1	Reporting practical and project work. Writing literature surveys and reviews. Organizing a poster display. Giving an oral presentation.	5	2,3	
2	2.2	Writing scientific papers – justification for scientific contributions, bibliography, description of methods, conclusions, the need for illustration, style, publications of scientific work.	5	2,3	
	2.3	Ethical challenges in chemistry research, Responsible conduct of research, Writing Ethics, Avoiding plagiarism.	5	4	
		Training on writing a project report			
3	3.1	 Project selection Literature Survey Conducting the project Preparing a report Preparing and displaying a poster ICT enabled oral presentation 	15	1,2,3,4,5	
A		Teacher-Specific content			
4					

	Classroom Procedure (Mode of transaction)
Teaching and	• Lectures
Learning	 Discussions
Approach	 Group activities
	• Presentations by students.
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA) (25 Marks)
	i) Poster presentation: 5 marks
	ii) Oral presentation: 10 marks
Assessment	iii) Project report: 5 marks
Types	iv) Classroom participation (participation in class activities) : 5 marks
	B. End Semester Examination (50 Marks- 1.5 Hrs)
	i) MCQ: 9 questions: $9 \ge 1 = 9$
	ii) Short answer 5 questions (out of 7): $5 \ge 4 = 20$
	iii) Short essay 3 questions (out of 5): $3 \times 7 = 21$

- 1. A T Tyowua, A Practical Guide to Scientific Writing in Chemistry: Scientific Papers, Research Grants and Book Proposals, CRC Press. 2023.
- 2. F. H. Jardine, How to do your Student Project in Chemistry, Springer, 1994.
- 3. A M. Coghill and L R Garson, *The ACS Style Guide: Effective Communication of Scientific Information*, Oxford University Press, 2006.
- 4. V Bairagi, M V. Munot, *Research Methodology: A Practical and Scientific Approach*, CRC Press, 2019.
- 5. H G Deal, *Science Research Writing for Native and Non-Native Speakers of English*. World Scientific Publishing Europe Ltd, 2020.
- 6. D Angelo, G John, *Ethics in Science: Ethical Misconduct in Scientific Research*, Chapman and Hall/CRC, 2018.
- 7. https://www-library.ch.cam.ac.uk/list-useful-databases
- 8. https://fordham.libguides.com/Chemistry/Databases

SEMESTER VII

Ringyanina P	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B Sc CHEN	/ISTRY(I	Hons.)			
Course Name	Coordinati	Coordination and Organometallic Chemistry				
Type of Course	DCC					
Course Code	MCE7DCCCHE400					
Course Level	400-499					
Course Summary	bonding, an	d reactivity synthesis,	y of coordin	nsive understa nation comple rtic application	xes, electro	onic spectral
Semester	VII		Credits		4	Total
Course Details	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours
	Approach	4				60
Pre-requisites, if any	Inorganic C	hemistry -	2			

CO No.	Expected Course Outcome	Learning Domains *	PO No.			
Upon ti	he completion of the course, student will be able to:					
1	Compare the stability of metal complexes.	Е	1, 2			
2	Examine the structure and bonding in coordination and organometallic compounds using the concepts of crystal field theory and molecular orbital theory.	An	1, 2			
3	Construct correlation diagrams and explain the spectral properties of metal complexes.	А	1, 2			
4	Analyse the reactions of organometallic compounds.	An	1, 2			
5	Examine the catalytic properties of various organometallic compounds and their applications.	An	1, 2, 10			
*Ren	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Module	Units	Course description	Hrs	CO No.
		Structure and Bonding in Coordination Com	plexes	
	1.1	Classification of complexes based on coordination numbers and possible geometries, σ and π bonding ligands such as CO, NO, CN ⁻ , R ₃ P, and Ar ₃ P.	2	1
	1.2	Stability of complexes, kinetic and thermodynamic aspects of complex formation - Irving William order of stability.	2	1
1	1.3	Splitting of d orbitals in octahedral, tetrahedral, square planar, square pyramidal and triagonal bipyramidal fields.	2	1
1.4	1.4	Crystal Field Stabilization Energy (CFSE) and Dq values, Jahn Teller (JT) distortion $(d^1 - d^{10})$ systems), static and dynamic JT distortion, consequences of JT distortion, theoretical failure of crystal field theory, Ligand Field Stabilization Energy (LFSE) and evidence of covalency in the metal-ligand bond.	4	1
	1.5	Ligand field theory and molecular orbital theory - diagrams for octahedral and tetrahedral complexes without and with π - bonding, experimental evidences for π - bonding.	5	2
		Electronic Spectral Properties of Metal Comp	olexes	
2	2.1	Electronic spectra of complexes: term symbols and microstates of d^n systems, Racah parameters, splitting of terms in weak and strong octahedral and tetrahedral fields, selection rules for electronic transitions - effect of spin-orbit coupling and vibronic coupling.	5	3
	2.2	Correlation diagrams: Orgel and Tanabe – Sugano diagrams.	3	3
	2.3	Electronic spectra of metal complexes and their interpretation. Charge transfer spectra, luminescence spectra.	5	3
	2.4	Electronic spectra of lanthanide and actinide complexes.	2	3
-		anometallic Compounds-Synthesis, Structure a		

5	Teacher Specific Content					
	4.3	Grubbs (I generation & II Generation) and Schrock catalysts – preparation and characteristics, olefin metathesis, ROMP.	2	5		
4	4.2	Homogeneous/heterogeneous catalysis: Tolman catalytic loops, hydrogenation by Wilkinson catalyst, olefin isomerization, Wacker process, hydroformylation (Co & Rh), Monsanto & Cativa acetic acid process, Ziegler-Natta polymerization including metallocene based Zr catalyst, water gas shift reaction and the Fischer-Tropsch reaction (synthesis of gasoline).	7	5		
	4.1	Unique reactions in organometallic chemistry: oxidative addition (concerted and stepwise, C_{aryl} -H activation – orthometallation), reductive elimination, migratory insertion (1,1 and 1,2), β -hydride abstraction/elimination. Agostic interactions, σ -bond metathesis (Zr(IV) and Lu(III)).	6	4		
]	Reactions of Organometallic Compounds and C	atalysis			
	3.7	Ferrocene: structure and bonding.	1	1		
	3.6	Cyclopentadienyl complexes – fluxionality.	1	1		
	3.5	Isolobal analogy.	1	1		
	3.4	Bridging and non-bridging (polynuclear) metal carbonyls, IR spectra of metal carbonyls, carbonyl clusters, Wade-Mingos rules.	3	1		
	3.3	18 electron rule.	1	1		
	3.2	Preparation of metal nitrosyl, dinitrogen, alkyl, aryl, alkene, alkyne, carbenes - carbynes (Fischer & Schrock), arene and phosphine complexes.	3	1		
	3.1	Ligands and their bonding with metals: CO, CN, NO, N ₂ , H ₂ , alkene, alkyne, PR ₃ , arenes, dienes, allyl, carbenes – carbynes (Fischer and Schrock) and alkyl.	5	1		

Teaching and	Classroom Procedure (Mode of transaction)
Learning Approach	 Lecture (chalk & board, powerpoint presentation) Group discussion
	• Peer teaching
	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) (30 Marks)
	i) Quiz: 5 marks
	ii) Assignment: 5 marks
Assessment Types	iii) Class Test (MCQ/written): 20 marks
Types	End Semester Examination
	Theory: Written examination (70 marks- 2 Hrs)
	i) Short answer, 5 questions (out of 6): $5 \ge 4 = 20$
	ii) Short essay, 5 questions (out of 7): $5 \ge 7 = 35$
	iii)Essay, 1 question (out of 2): $1 \times 15 = 15$

- F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry: A Comprehensive Text, 3rd Edn. Interscience, 1972.
- 2. J. E. Huheey, E. A. Keiter, *Inorganic Chemistry Principles of Structure and Reactivity*, 4th Edn. Pearson Education India, 2006.
- 3. K. F. Purcell, J.C. Kotz, Inorganic Chemistry, Cengage, 2010.
- 4. F. Basolo, R. G. Pearson, *Mechanisms of Inorganic Reactions*, John Wiley & Sons, 2006.
- 5. E. Douglas, D. H. McDaniel, J. J. Alexander, *Concepts and Models of Inorganic Chemistry*, 3rd Edn. Wiley-India, 2007.
- 6. R. S. Drago, *Physical Methods in Chemistry*, Saunders College, 1992.
- 7. B. N. Figgis, M. A. Hitchman, *Ligand Field Theory and its Applications*, Wiley-India, 2010.
- 8. J. D. Lee, Concise Inorganic Chemistry, 4th Edn. Wiley-India, 2008.
- 9. R. G. Wilkins, *Kinetics and Mechanisms of Reactions of Transition Metal Complexes*, Wiley VCH, 2002.
- 10. G. A. Lawrance, *Introduction to Coordination Chemistry*, John Wiley & Sons Ltd, 2010.
- 11. E. Housecroft, A. G. Sharpe, *Inorganic Chemistry*, Pearson, 5th Edn. 2018.

Recorded and the second	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	B Sc CHEN	AISTRY(H	ons.)				
Course Name	Organic Chemistry - 5						
Type of Course	DCC						
Course Code	MCE7DCC	MCE7DCCCHE401					
Course Level	400-499	400-499					
Course Summary	reactive inter their behave	This course delves into the concepts of organic chemistry, focusing on reactive intermediates and the underlying physical principles governing their behaviour. It also investigates concerted reactions and advanced stereochemical aspects of organic reactions.					
Semester	VII	Credits 4				Total	
Course Details	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours	
	Approach	3		1		75	
Pre-requisites, if any			·	·			

CO No.	Expected Course Outcome	Learning Domains *	PO No.
	Upon the completion of the course, student will be al	ole to:	
1	Predict the reaction mechanism and rationalize the outcome of various organic reactions and obtain practical experience.	А	1, 2, 4, 10
2	Illustrate and practice the transformations and rearrangements of reactive intermediates.	An	1, 2, 4, 10
3	Correlate the reactivity of organic molecules to HSAB concept and various kinetic and thermodynamic conditions and obtain hands-on experience in this area.	An	1, 2, 4, 10
4	Distinguish and predict the stereoselectivity, regioselectivity, and feasibility of pericyclic reactions and their applications.	E	1, 2, 3, 4, 10
5	Master in determining and differentiating chirality, topicity of organic molecules and explore the chemical consequences and applications of conformational equilibria.	С	1, 2, 4, 9, 10
6	Perform raw mechanisms and schemes using chemistry software.	А	1, 2, 4, 10

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description	Hrs.	CO No.		
	Org	anic Reactivity and Mechanistic Insights: Explorin Intermediates and Physical Principles	ng Rea	ctive		
	1.1	Mechanical aspects of S_N1 , S_N2 , S_NAr , $S_{RN}1$, S_{Ni} , S_E1 , S_E2 , effect of substrate, reagent, leaving group, solvent and neighbouring group on nucleophilic substitution (S_N2 and S_N1).	5	1		
1	1.2	Reactive Intermediates: non-classical carbocations. Structure, generation and reactions of carbenes and nitrenes: insertion reaction of carbene. Simmons-Smith reaction, Lossen reaction, Curtius reaction, Wolff rearrangement and Hoffmann rearrangement.	5	2		
	1.3	Physical organic chemistry: kinetic versus thermodynamic control of product formation Hammond postulate, Hammet equation, hard and soft acids and bases – HSAB principle and its applications (organic reactions only).	5	3		
	Symn	Symmetry and Molecular Transformations: Insights int Reactions				
	2.1	Classification: electrocyclic, sigmatropic, cycloaddition, chelotropic, ene and dyotropic reactions. Woodward -Hoffmann rules - frontier orbital and orbital symmetry correlation approaches - PMO method (for electrocyclic and cycloaddition reactions only).	5	4		
2	2.2	Pericyclic reactions in organic synthesis such as Claisen, Cope, Wittig, and Mislow-Evans rearrangements. Diels-Alder and ene reactions (with stereochemical aspects), dipolar cycloaddition (introductory).	5	4		
	2.3	Unimolecular pyrolytic elimination reactions of acetates, xanthates and tertiary amine oxides, cheletropic elimination.	5	4		

	Advan	ced Stereochemistry & Conformational Stability a	nd Rea	ctivity
3	3.1	Axial, planar and helical chirality with examples, stereochemistry and absolute configuration of allenes, biphenyls and binaphthyls, ansa and cyclophanic compounds, spiranes, exo-cyclic alkylidenecycloalkanes.	5	5
	3.2	Topicity and prostereoisomerism, topicity of ligands and faces as well as their nomenclature, NMR distinction of enantiotopic /diastereotopic ligands.	5	5
	3.3	Conformation and reactivity of cyclohexane systems: dehalogenation, dehydrohalogenation, semipinacolic deamination and pyrolytic eliminations, Grob fragmentation. Chemical consequence of conformational equilibrium - Curtin Hammett principle.	5	5
		Organic Chemistry - 5 Practical		
4		 (i) Practice Chemdraw (Use ChemDraw / other software to draw and manipulate different organic chemistry structures and reactions) (ii) Virtual Synthesis of aspirin (enable students to undertake an aspirin synthesis, perform recrystallization, Thin Layer Chromatography and calculation of yield using a digital resource). 		
4		iii) Synthesis of aspirin iv) Experiment on Hammett equation (Experimentally determine the acid dissociation constant (K_a) of a series of substituted benzoic acids, correlate the K_a values with known substituent constants (σx) and use the correlation generated above to calculate the substituent constants for 'unknown' substituted benzoic acid compounds.		6
5		Teacher Specific Content		
5				

	Classroom Procedure (Mode of transaction)					
Teaching and	Lecture using PowerPoint presentation					
Learning	Google classroom					
Approach	Group learning					
	Laboratory work					
	MODE OF ASSESSMENT					
	A. Continuous Comprehensive Assessment (CCA)					
	Theory (25 Marks)					
	i) Pop quizzes: 5 marks					
	ii) Problem based assignments: 5 marks					
	iii) Written/MCQ tests: 15 marks					
	Practical (15 Marks)					
	i) Quiz					
Assessment	ii) Lab involvement					
Types	B. End Semester Examination					
	Theory: Written examination (50 marks- 1.5 Hrs)					
	i) Short answer, 7 questions (out of 9): $7 \times 3 = 21$					
	ii) Short essay, 2 questions (out of 3): $2 \ge 7 = 14$					
	iii) Essay, 1 question (out of 2): $1 \ge 15$					
	Practical: (35 marks- 1 Hr)					
	i) Viva voce: 10					
	ii) Written test of practical procedures: 15					
	iii) Certified report of lab work done: 10					

- 1. R. T. Morrison, R. N, Boyd, S. K. Bhattacharjee, *Organic Chemistry*; 7th Edn. Dorling Kindersley (India) Pvt. Ltd (Pearson Education), 2011.
- 2. T. W. G. Solomon, C. B. Fryhle, S. A. Snyder, Organic Chemistry; Wiley, 2014.
- 3. J. McMurry, Organic Chemistry; 7th Edn. Cengage Learning, 2013.
- 4. J. Clayden, N. Greeves, S. Warren, Organic Chemistry; Oxford University Press, 2012.
- 5. I. L. Finar, *Organic Chemistry*; Vol. 1 & 2; Dorling Kindersley (India) Pvt. Ltd (Pearson Education), 2002.
- 6. M. K. Jain, S. C. Sharma, Modern Organic Chemistry; Vishal Publishing Co., 2010.
- 7. A. Bahl, B. S. Bahl, Advanced Organic Chemistry; S. Chand, 2010.
- 8. F. A. Carey, R. J. Sundberg, *Advanced Organic Chemistry: Part A: Structure and Mechanisms*; Springer Science & Business Media, 2007.
- 9. R. O. C. Norman, J. M. Coxon, Principles of Organic Synthesis; Routledge, 2017.
- 10. S. H. Pine, Organic Chemistry; Tata McGraw-Hill, 2014.
- 11. S. Furniss, A. J. Hannaford, V. Rogers, P. W. G. Smith, A. R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*; 5th Edn., Pearson Education, 2005.
- 12. V. K. Ahluwalia, S. Dhingra, Comprehensive Practical Organic Chemistry Qualitative Analysis; University Press, 2000.
- 13. F. G. Mann, B. C. Saunders, *Practical Organic Chemistry*; 4th Edn. Pearson Education, 2009.

Rest Hand State	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B Sc CHEMISTRY	(Hons.)				
Course Name	Molecular Spectroscopy					
Type of Course	DCC					
Course Code	MCE7DCCCHE402					
Course Level	400-499					
Course Summary	This course deals wi of combined spect spectrometry.			-	-	-
Semester	VII		Credits		4	Total
Course Details	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours
	Approach	4				60
Pre-requisites, if any						

CO No.	Expected Course Outcome	Learning Domains *	PO No.					
Upon th	Upon the completion of the course, student will be able to:							
1	Outline the theoretical aspects of various spectroscopic techniques.	U	1, 2					
2	Illustrate the basic concepts of infrared spectroscopy.	U	1, 2					
3	Apply the principles of electronic spectroscopy to organic compounds.	А	1, 2					
4	Demonstrate the underlying principles of NMR spectroscopy.	U	1, 2					
5	Explain the concepts of mass spectrometry.	U	1, 2					
6	Deduce the structure of organic compounds by means of combined spectral techniques such as IR, UV, NMR and mass spectrometry.	Е	1, 2, 4, 10					
	hber (K), Understand (U), Apply (A), Analyse (An), Evaluat Prest (I) and Appreciation (Ap)	te (E), Create (C),	Skill					

Module	Units	Units Course description			
		Infrared and Electronic Spectroscopic Techniq	lues		
	1.1	Hooke's law, bond properties and absorption trends, fundamental vibrations, characteristic regions of the spectrum (fingerprint and functional group regions), influence of substituent, ring size, hydrogen bonding & solvent effect.	3	1, 2	
	1.2	IR spectra of O-H bonds (alcohols and carboxylic acids), C=C bonds (olefins and arenes), C=O bonds (acids, aldehydes, ketones, and esters) and C-H bonds (alkanes, alkenes and alkynes).	4	1, 2	
1		Spectral interpretation and problems.			
	1.3 auxochrome, representation o bathochromic shift, hyp	Nature of electronic transitions, chromophore, auxochrome, representation of electronic spectra, bathochromic shift, hypsochromic shift, hyperchromic shift and hypochromic shift.	2	1, 3	
	1.4	Influence of substituents, solvent effect, conjugation, ring size and strain on spectral characteristics.	2	1, 3	
	1.5	Calculations of λ_{max} of enones, aromatic hydrocarbons and conjugated polyenes based on Woodward-Fieser and Fieser-Kuhn rules.	4	1, 3	
		Spectral interpretation and problems.			
		Nuclear Magnetic Resonance Spectroscopy			
	2.1	NMR phenomena based on ¹ H & ¹³ C nuclei, ¹ H & ¹³ C NMR spectra, relaxation processes.	3	1, 4	
2	2.2	Chemical shift, magnetic anisotropy and shielding/deshielding, chemical equivalence and number of NMR signals. Population densities of nuclear spin states- intensity of the signal.	3	1, 4	
	2.3	Spin-spin splitting, coupling constant, geminal coupling, Karplus curve, Pople notation - AX, AX ₂ , A ₂ X ₃ , AB, AB ₂ type coupling, first order and non-first order spectra, homotopic, enantiotopic and diastereotopic protons.	4	1, 4	

	2.4	Simplification of non-first order spectra to first order spectra: spin decoupling and double resonance, off resonance decoupling, NOE and cross polarization and DEPT. Spectral interpretation and problems.	5	1, 4
		Mass Spectrometry		
3	3.1	Basic principles. Ionization methods: Gas phase ionization methods– electron impact ionization (EI) and chemical ionization (CI); desorption ionization methods – SIMS, FAB and MALDI. Electrospray ionisation (ESI). Comparison between EI and CI. Mass analysers - time of flight analyser and quadrupole analyzer. Nitrogen and ring rules. Determination of molecular weight and molecular formula. HRMS. Tandem mass spectrometry (MS- MS) (concept only).	7	1, 5
	3.2	Fragmentation and structural analysis: types of peaks involved (molecular ion, quasi molecular ion, isotopic peak, base peak, parent ion, daughter ion, fragment ion, metastable ion). Fundamental fragmentation processes – Stevenson's rule, α - cleavage, two-bond cleavage, retro Diels- Alder cleavage and McLafferty rearrangements. Fragmentation pattern of hydrocarbons, alcohols, phenols, ethers, carbonyl compounds and amines. Mass spectral analysis and problem solving.	8	1, 5
		Structure Elucidation of Organic Compound	ls	
4	4.1	Identification of structures of organic compounds based on the data from mass spectrometry, UV-Vis, IR, ¹ H NMR and ¹³ C NMR spectroscopy. Interpretation of the given UV-Vis, IR and NMR spectra.	15	6
5		Teacher Specific Content		

Teaching and Learning Approach

	MODE OF ASSESSMENT				
	A. Continuous Comprehensive Assessment (CCA) (30 Marks)				
	i) Quiz: 5 marks				
	ii) Assignment: 5 marks				
Assessment	iii) Problem based test (open book): 5 marks				
Types	iv) Test: 15 marks				
- 5 - 5	B. End Semester Examination				
	Theory: Written examination (70 marks- 2 Hrs)				
	i) MCQ, 10 questions: $10 \ge 10$				
	ii) Short answer, 8 questions (out of 10): $8 \ge 3 = 24$				
	iii) Long answer, 3 questions (out of 5): $3 \ge 7 = 21$				
	iv) Essay, 1 question (out of 2): 1 x 15 = 15				

- 1. L. Pavia, G. M. Lampman, G. S. Kriz, *Introduction to Spectroscopy*, 3rd Edn. Brooks Cole, 2000.
- 2. A. U. Rahman, M. I. Choudhary, *Solving Problems with NMR Specroscopy*, Academic Press, 1996.
- 3. L. D. Field, S. Sternhell, J. R. Kalman, *Organic Structures from Spectra*, 4th Edn., John Wiley & sons, 2007.
- 4. C. N. Banwell, E. M. McCash, *Fundamentals of Molecular Spectroscopy*, 4th Edn. Tata McGraw Hill, 1994.
- 5. D. F. Taber, Organic Spectroscopic Structure Determination: A Problem Based Learning Approach, Oxford University Press, 2007.
- 6. H. Gunther, *NMR Spectroscopy*, 2nd Edn. Wiley, 1995.
- 7. R. M. Silverstein, G. C. Bassler, T. C. Morril, *Spectroscopic Identification of Organic Compounds*, 5th Edn. Wiley, 1991.
- 8. D. H. Williams, I. Fleming, *Spectroscopic Methods in Organic Chemistry*, 6th Edn. McGraw-Hill, 2008.
- 9. W. Kemp, Organic Spectroscopy, 2nd Edn. Macmillan, 2019.
- 10. F. Bernath, Spectra of Atoms and Molecules, 2nd Edn. Oxford University Press, 2005.
- 11. E. B. Wilson Jr., J. C. Decius, P. C. Cross, *Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra*, Dover Pub., 1980.
- 12. L. D. S. Yadav, Organic Spectroscopy, Springer, 2005.
- 13. A. K. Bhuyan, Fundamental Concepts of Molecular Spectroscopy, CRC Press, 2023.
- 14. Y. C. Ning, Interpretation of Organic Spectra, John Wiley & Sons, 2011.

Receipting the second	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	BSc (Hons) CHEN	AISTRY				
Course Name	Drug Therapy and	d Drug Desig	gn			
Type of Course	DCE					
Course Code	MCE7DCECHE4	00				
Course Level	400-499					
Course Summary	This course explores the fundamental concepts of drug therapy, drug discovery and design, drug delivery systems and computer aided drug design.					
Semester	VII	VII Credits 4 Total				
Course Details	Learning Approach	ch Lecture Tutorial Practical Others Hours				Hours
		4				60
Pre-requisites, if any						

CO	Expected Course Outcome	Learning	PO No.			
No.		Domains *				
1	Explain the principles of drug therapy.	U	1,2,3			
2	Analyse the concepts of drug design, leads, analogues, prodrugs and combinatorial synthesis.	An	1,2,3			
	Develop the concepts of enzymes and receptors as					
3	targets of drug design.	А	1,2,3,10			
4	List the importance of various drug delivery systems.	U	1,2,3			
5	Discuss the principles of computer aided drug design.	U	1,2,3,10			
*Reme	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Module	Units	Course description	Hrs.	CO No.
		Principles of Drug Therapy		
	1.1	Introduction to drugs. General Principles of drug therapy. Relationship between chemical structure, lipid solubility and biological activity of drugs. Stereochemistry and biological activity. The importance of water solubility.	6	1
1	1.2	Drug action: the pharmacokinetic phase- ADME of the drug. The pharmacodynamics phase.	2	1
	1.3	Drug metabolism: sites of drug metabolism and phase I and phase II reactions. Prodrugs.	4	1
	1.4	Classification of drugs: based on chemical structure, pharmacological action and physiological classification.	3	1
		Drug discovery and design		
	2.1	Historical outline, rational drug design. The general stages in modern-day drug discovery and design.	2	2
	2.2	Leads and analogues: bioavailability, solubility, structure and stability.	2	2
2	2.3	Sources of leads and drugs. Approaches to lead optimisation.	4	2
	2.4	Prodrug design and applications: prodrug forms of various functional groups, prodrugs and intellectual	4	2
	2.5	Combinatorial Chemistry: introduction, solid-phase and solution phase strategies.	3	2
		Enzymes, Receptors and Drug Delivery Syste	ems	
3	3.1	Enzymes as targets of drug design: enzyme inhibition and activation, approaches to the rational design of enzyme inhibitors.	3	3
J	3.2	Receptors as targets of drug design: receptor theory, receptor complexes and allosteric modulators, molecular biology of receptors, receptor models and nomenclature, receptor binding assays, lead compound discovery of receptor agonists and antagonists.	7	3

	3.3	Drug delivery systems: general consideration, macromolecular drug carrier systems, bio precursor prodrugs, oxidative activation and reductive activation.	5	4		
		Computer-Aided Drug Design				
	4.1	Basic concepts of CADD, molecular modelling: energy minimization, geometry optimization, conformational analysis, global conformational minima determination; approaches and problems; bioactive vs. global minimum conformations. Automated methods of conformational search.	5	5		
4	4.2	Molecular docking and dynamics: rigid docking, flexible docking, manual docking; advantages and disadvantages of flex-X, flex-S, autodock and dock softwares with suitable examples; Monte Carlo simulations and molecular dynamics in performing conformational search and docking.	5	5		
	4.3	QSAR: changing size and shape and introduction of new substituents, lipophilicity, electronic and steric effects, Hansch analysis. Structure activity relationships and pharmacological activity. CoMFA analysis, 3D-QSAR.	5	5		
~	Teacher Specific Content					
5						

Teaching and	Classroom Procedure (Mode of transaction)						
Learning	 Lecture Sessions 						
Approach	 Interactive sessions including discussions 						
	MODE OF ASSESSMENT						
	A. Continuous Comprehensive Assessment (CCA) Total marks: 30						
	i) Assignments						
	ii) MCQ						
	iii)Class test						
	iv)Viva						
Assessment	B. Semester end examination Total Marks: 70- 2 hrs.						
Types	i) Short answer 5 questions (out of 7): $5 \ge 4 = 20$						
• •	ii) Short essay 5 questions (out of 7): $5 \ge 7 = 35$						
	iii) Essay 1 question (out of 2): $1 \times 15 = 15$						

- 1. E. H. Kerns, L. Di, Drug-Like Properties: Concepts, Structure Design and Methods: from ADME to Toxicity Optimization, Academic Press, Oxford, 2008.
- 2. M. E. Wolff, Burger's Medicinal Chemistry and Drug Discovery, 6th Edition, John Wiley & Sons: New York, 2003.
- 3. T.L. Lemke, D. A. Williams, V. F. Roche, and S.W. Zito, Principles of Medicinal Chemistry, 7th Edition, Williams and Wilkins: Philadelphia, 2013.
- 4. Sriram, P. Yogeswari, Medicinal Chemistry, Pearson Education India, 2010.
- 5. Gareth Thomas, Medicinal Chemistry, John Wiley & Sons Ltd, 2007.
- 6. Lemke, Essentials of Foye's Principles of Medicinal Chemistry, Wolters Kluwer (India) Pvt. Ltd., 2016.
- 7. Alagarsamy V., Text Book of Medicinal Chemistry, CBS Publishers, 2022.
- 8. K. A. Solomon, Molecular Modelling and Drug Design, MJP publishers, 2011.
- 9. T. D. A. Kumar, Drug Design: A Conceptual Overview, CRC Press, 2022.
- 10. J. M. C. Rosa, M. E. C. Quesada, Drug Design and Action, De Gruyter, 2017.
- 11. B. Singh, Computer-Aided Drug Design, Springer, 2020.
- 12. G. Klebe, Drug Design, Springer, 2013.
- 13. M. W. Harrold, R. M. Zavod, Basic concepts in medicinal chemistry, ashp, 2023.

Realized and the second	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B Sc CHEN	AISTRY(I	Hons.)			
Course Name	Industrial (Chemistry	,			
Type of Course	DCE					
Course Code	MCE7DCE	CHE401				
Course Level	400-499					
Course Summary	This course covers the manufacture and applications of inorganic and organic chemicals, petroleum refining, industrial safety and pollution prevention.					-
Semester	VII		Credits		4	Total
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours
	Approach	4				60
Pre- requisites, if		1	-		1	-

٦

COURSE OUTCOMES (CO)

Г

Т

CO No.	Expected Course Outcome	Learning Domains *	PO No		
1	Explain the manufacture and uses of common inorganic and organic chemicals.	U	1,2		
2	Describe various processes involved in petroleum	U	1,2		
3	Discuss safety aspects of the chemical industry.	U	1,2		
4	Analyse various aspects of industrial pollution prevention.	An	1,2		
*Reme	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

	Units	Course description	Hrs	CO No.
Module		Inorganic Chemicals		<u> </u>
	1.1	Manufacture and applications of sulphuric acid, phosphoric acid, lime, soda ash, titanium dioxide and sodium chloride.	7	
-	1.2	Manufacture and uses of syn gas, nitrogen, oxygen, hydrogen and ammonia.	4	
1	1.3	Production of potable water: break-point chlorination and ozonization, flocculation and sedimentation, filtration, removal of dissolved inorganic impurities, activated charcoal treatment. Production of deionized water. Production of freshwater from seawater and brackish water.	4	
		Petroleum Refining		
	2.1	Primary raw materials for petrochemicals- natural gas, crude oil (composition, properties and classification), coal, oil shale, tar sand and gas hydrates.	5	
2	2.2	Introduction to petroleum refining, desalting, distillation, hydrotreating or hydroprocessing, cracking or hydrocracking, coking, visbreaking, steam cracking, alkylation, catalytic reformers, removal of the natural gas fraction, sulfur recovery.	7	
	2.3	Hydrocarbon intermediates and liquid petroleum fractions, chemicals based on methane.	3	
		Organic Chemicals		
	3.1	Manufacture and uses of methanol, formaldehyde, formic acid and hydrocyanic acid.	5	
	3.2	Manufacture and uses of ethylene, propene and acetylene.	3	
3	3.3	Hydroformylation of olefins, industrial hydroformylation.	2	
	3.4	Manufacture and uses of ethanol, acetaldehyde and acetic acid.	3	
	3.5	Chemicals based on benzene, toluene and xylenes.	2	
		Safety Considerations and Industrial Pollution Preventi	on	
4		OSHA (Occupational Safety and Health Administration) and PSM(Process Safety Management).	2	

	4.2	Types of hazards in industries: heat and temperature, pressure, electrical, and mechanical hazards, toxic materials, fire and	6	
	4.3	Types of industrial wastes, public concern over pollution, legislation to waste management, industrial pollution	7	
5		Teacher Specific Content		

Teaching and	Classroom Procedure (mode of transaction)						
Learning	 Lecture Sessions 						
Approach	 Interactive sessions including discussions 						
	MODE OF ASSESSMENT						
	A. Continuous Comprehensive Assessment (CCA) Total marks: 30						
	i) Assignments						
	ii) MCQ						
Assessment	iii) Class test						
Types	iv) Viva						
~ 1	B. End Semester Examination: Total marks: 70-2 hrs.						
	i) Short answer 5 questions (out of 7): $5 \ge 4 = 20$						
	ii) Short essay 5 questions (out of 7): $5 \times 7 = 35$						
	iii) Essay 1 question (out of 2): $1 \times 15 = 15$						

- 1. J. A. Tyrell, Fundamentals of Industrial Chemistry, John Wiley & Sons, 2014.
- 2. K. Weissermel, H. J. Arpe, Industrial Organic Chemistry, Wiley VCH, 1997.
- 3. M. A. Benvenuto, Industrial Organic Chemistry, De Gruyter Graduate, 2017.
- 4. M. F. Ali, B. M. Ali, J. G. Speight, Handbook of Industrial Chemistry, McGraw-Hill, 2005.
- 5. K. H. Buchel, H. H. Moretto, P. Woditsch, *Industrial Inorganic Chemistry*, Wiley VCH, 2003.
- 6. P. J. Chenier, Survey of Industrial Chemistry, Kluwer Academic, 2002.
- 7. S. Matar, L.F. Hatch, *Chemistry of Petrochemical Processes*, Gulf Professional Publishing, 2001.
- 8. P. G. More, Comprehensive Industrial Chemistry, Pragati Prakashan, 2021.
- 9. B. K. Sharma, Industrial Chemistry Part 1 & 2, Krishna Prakashan, 2023

Real Provide August Aug	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	BSc CHE	MISTRY	(Hons.)				
Course Name	Advanced	Chemist	ry of Mair	Group Eler	nents		
Type of Course	DCE						
Course Code	MCE7DC	CECHE40	2				
Course Level	400-499						
Course Summary	This cours chemistry	-		nced aspects nents.	s of propert	ies and	
Semester	VII		Credi	ts	4		
Course Details	Learning	Lecture Tutorial Practical Others Total Hours					
	Approach	roach 4 60					
Pre-requisites, if any							

CO	Expected Course Outcome	Learning	PO No			
No.		Domains *				
1	Describe the advanced chemistry of main group elements.	U	1,2			
2	Analyse the coordination and aqueous chemistry of group 1 and 2 metals.	An	1,2			
3	Analyse the compounds and coordination complexes of group 13 and 14 elements.	An	1,2			
4	Analyse the properties and chemistry of group 15 and 16 elements.	An	1,2			
5	Compare the chemistry of halogens, and noble gases.	An	1, 2			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

Module	Units	Course description	Hrs	CO No.
		Group 1 and Group 2 Metals		110.
1	1.1	Aqueous solution chemistry of group 1 metal compounds, complex formation of group 1 metals with crown ethers, sandwich complexes with crown ethers, cryptates of group 1 metal ions, sodide ion in cryptates, alkalide ions of higher alkali metals, uses of alkali metal cryptands.	5	1,2
1	1.2	Non-aqueous coordination chemistry of alkali metals. Zintl phases containing alkali metals. Compound formation with aromatic compounds, sodium and potassium alkyls.	4	1,2
	1.3	Complex ions of group 2 metals in aqueous solution, complexes of group 2 metal ions with EDTA, [P3O10] ⁵⁻ , crown ethers and cryptands. Complexes of group 2 metal ions with amido and alkoxy ligands.	6	1,2
		Group 13 and 14 Elements		
	2.1	Biological aspects of boron, toxicity of aluminium, aqua ions of Al, Ga, In and Tl, coordination complexes of M^{3+} ions of Al, Ga and In. Metal borides- synthesis, structure and applications.	4	1, 3
2	2.2	Zintl phases of group 13 elements. Spinels and tricalcium aluminate. Chalcogenides of Al, Ga, In and Tl.	4	1, 3
	2.3	Complexes containing a naked carbon atom, complexes containing naked dicarbon ligands. Carbides, silicides, germides, stannides and plumbides. Zintl ions containing Si, Ge, Sn and Pb. Polyatomic anions of Ge, Sn, and Pb. Sila- and germa-aromatic compounds.	7	1,3
		Group 15 and 16 Elements	1	_
3	3.1	Hydrogen azide and azide salts. Nitrides, phosphides, arsenides, antimonides and bismuthides. Organometallic compounds of arsenic, antimony, and bismuth. π -Coordination complexes of phosphorus–carbon compounds.	7	1,4
	3.2	Polyanions and polycations of sulfur, selenium, and tellurium. Polysulfides, polyselenides and polytellurides. Compounds of sulfur and selenium with nitrogen.	4	1,4

	3.3	Allotropes of selenium and tellurium. Polyatomic cations and anions of selenium and tellurium. Biological aspects of oxygen, sulphur and selenium.	4	1,4
		Group 17 and 18 Elements		
	4.1	Industrial extraction of fluorine, fluoridation of water. Polyhalogen cations, polyhalide anions, oxofluorides of chlorine, bromine and iodine.	4	1,5
4	4.2	Aqueous solution chemistry of chlorine, bromine and iodine. Biological aspects of fluorine, chlorine, bromine and iodine. Chemistry of astatine.	4	1,5
	4.3	Chemistry and uses of helium. Synthesis, structure and reactions of xenon insertion compounds, organoxenon compounds and compounds containing metal–xenon bonds.	4	1,5
	4.4	Compounds of argon, krypton and radon and coordination compounds of noble gases. Biological aspects of noble gases.	3	1,5
5		Teacher Specific Content		•

Teaching and	Classroom Procedure (mode of transaction)							
Learning	• Lecture sessions							
Approach	 Interactive sessions including discussions 							
	MODE OF ASSESSMENT							
	A. Continuous Comprehensive Assessment (CCA) Total marks: 30							
	i) Assignments							
	ii) MCQ							
	iii)Class test							
Assessment	iv)Viva							
Types	B. End Semester Examination							
	Total Marks- 70- 2hrs.							
	i) Short answer 5 questions (out of 7): $5 \ge 4 = 20$							
	ii) Short essay 5 questions (out of 7): $5 \ge 7 = 35$							
	iii) Essay 1 question (out of 2): $1 \times 15 = 15$							

- C. E. Housecroft, A. G. Sharpe, *Inorganic Chemistry*, 5th Edn., Pearson, 2018.
 D. Shriver, M. Weller, T. Overton, J. Rourke, F. Amstrong, *Inorganic Chemistry*, 7th Edn., Oxford University Press, 2018.

- 3. G. R. Canham, T. Overton, *Descriptive Inorganic Chemistry*, W.H. Freeman & Company, 2014.
- 4. W. Li, G. Zhou, T. C. W. Mak, Advanced Structural Inorganic Chemistry, OUP, 2008.
- 5. W. Hendersen, Main Group Chemistry, RSC, 2000.
- 6. N. N. Greenwood, A. Earnshaw, *Chemistry of the Elements*, Butterworth-Heinemann, 1998.
- 7. J. E. Huheey, E. A. Keiter, R. L. Keiter, O. K. Medhi, *Inorganic Chemistry: Principles of Structure and Reactivity*, 5th Edn., Pearson Education, 2022

Rest Francisco	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	B Sc CHE	MISTRY	(Hons.)				
Course Name	Statistical	Thermoo	lynamics a	nd Bioenergetic	S		
Type of Course	DCE						
Course Code	MCE7DC	ECHE40	3				
Course Level	400-499						
Course	This cours	e covers	the princip	les of statistical	thermodynami	ics and	
Summary	application	s of them	nodynamic	s and statistical t	hermodynamic	es to various	
	biological j	processes					
Semester	VII		Cre	edits	4	Total	
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours	
	Approach 4 60						
Pre-requisites, if any		1	1	1			

Т

Г

CO No.	Expected Course Outcome	Learning Domains *	PO No
1	Describe the basic principles of statistical thermodynamics.	U	1,2,3
2	Apply the principles of statistical thermodynamics to biological processes.	A	1,2,3
3	Analyse the energy changes associated with various biological processes.	An	1,2,3
4	Apply the principles of thermodynamics to various biological processes.	An	1,2,3
*Remen	uber (K), Understand (U), Apply (A), Analyse (An), Evalua Interest (I) and Appreciation (Ap)	tte (E), Create (C	C), Skill (S),

٦

Module	Units	Course description	Hrs.	CO No.
		Statistical Thermodynamics -1	1	
-	1.1	Probability, Stirling's approximation, macrostates and microstates, ensemble, types of ensembles.	3	1
1	1.2	Boltzmann distribution law, partition function and its physical significance, relation between molecular partition function and molar partition function, distinguishable and indistinguishable particles, partition function and thermodynamic functions, separation of partition function-translational, rotational, vibrational, and electronic partition functions. The equipartition theorem.	7	1
	1.3	Thermodynamic properties: internal energy, heat capacity, entropy, enthalpy and Gibbs free energy. Statistical basis of chemical equilibrium.	5	1
		Statistical Thermodynamics -2		
2	2.1	Need for quantum statistics, bosons and fermions, Bose- Einstein statistics: Bose-Einstein distribution law, Bose- Einstein condensation, first order and higher order phase transitions, liquid helium, Fermi- Dirac statistics: Fermi- Dirac distribution law, application in electron gas, thermionic emission. Comparison of three statistics.	10	1
	2.2	Applications of statistical mechanics to biological processes: helix– coil Transitions, cooperative transitions, internal energy and heat capacity of biological macromolecules, protein heat capacity functions.	5	2
		Bioenergetics	1	•
3	3.1	Bioenergetics, standard free changes in biochemical reactions, coupled reactions, ATP and its role in bioenergetics, high energy bond, free energy and entropy change in ATP hydrolysis.	8	3
	3.2	Thermodynamics of synthesis of ATP, thermodynamic aspects of metabolism and respiration, glycolysis, biological redox reactions and citric acid cycle.	7	3
		Thermodynamic Aspects of Biological Processes		

4	4.1	Thermodynamic aspects of photosynthesis, osmosis, dialysis, enzyme-substrate interactions, binding of oxygen to myoglobin and haemoglobin, cooperativity, allostery and proton binding by biomolecules.	8	4
	4.2	Thermodynamic aspects of transport of ions across biological membranes, biosynthesis of proteins, buffer action in blood, protein structure, mechanisms of protein folding and unfolding and DNA melting.	7	4
5		Teacher Specific Content		

Teaching and	Classroom Procedure (mode of transaction)				
Learning	• Lecture sessions				
Approach	 Interactive sessions including discussions 				
	MODE OF ASSESSMENT				
	A. Continuous Comprehensive Assessment (CCA)				
	Total marks: 30				
	i) Assignments				
	ii) MCQ				
	iii) Class test				
	iv) Viva				
Assessment	B. End Semester Examination Total Marks: 70- 2hrs.				
Types	i) Short answer 5 questions (out of 7): $5 \ge 4 = 20$				
	ii) Short essay 5 questions (out of 7): $5 \ge 7 = 35$				
	iii) Essay 1 question (out of 2): $1 \ge 15$				

1. P. Atkins, J. Paula, Physical Chemistry for the Life Sciences, Oxford University Press, 2006.

2. D. T. Haynie, *Biological Thermodynamics*, 2nd Edn. Cambridge University Press, 2008.

3. P. S. Kalsi, N. Mahanta, *Biophysical Chemistry*, 2nd Edn. New Academic Science Limited, 2014.

4. J. L. Burgot, *Thermodynamics in Bioenergetics*, CRC Press, 2020.

5. L.K. Nash, *Elements of Classical and Statistical Mechanics*, 2nd Edn. Dover Books, 2006.

6. M.C. Gupta, *Statistical Thermodynamics*, New age international, 2007.

7. T. Engel, P. Reid, *Thermodynamics, Statistical Thermodynamics & Kinetics*, 3rd Edn. Pearson, 2013.

8. G. G. Hammes, S. H. Schiffer, *Physical Chemistry for the Biological Sciences*, Wiley, 2015.

9. P. Nelson, *Biological Physics: Energy, Information, Life*, www.physics.upenn.edu/~pcn/, 2002.

10. G. G. Hammes, Thermodynamics and kinetics for the biological sciences, Wiley, 2000.

11. P. R. Bergethon, The Physical Basis of Biochemistry, 2nd Edn. Springer, 2010.

A DEFENSION	М	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	BSc CHE	MISTRY(H	lons.)					
Course Name	Novel Ino	rganic Solic	ls					
Type of Course	DCE	DCE						
Course Code	MCE7DC	MCE7DCECHE404						
Course Level	400-499							
Course Summary	properties	and application	ations of inor	route to nove ganic nanomat peciality polyn	terials, eng	-		
Semester	VII		Credits		4	Total		
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours		
	Approach	Approach 4 60						
Pre-requisites, if any		1		1	1			

٦

COURSE OUTCOMES (CO)

Г

CO	Expected Course Outcome	Learning	PO No				
No.		Domains *					
1	Describe different types of novel solids.	U	1,2				
2	Discuss synthetic methods of inorganic solids.	U	1,2				
3	Explain the synthesis, properties and applications of novel inorganic nanomaterials.	U	1,2				
4	Analyse various inorganic engineering materials and materials.	An	1,2				
5	Describe the synthesis, properties applications of polymers.	U	1, 2				
*Rem	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

Module	Units	Course description	Hrs	CO No.		
	Types of Novel Inorganic Solids and Synthetic Methods					
1	1.1	Solid electrolytes – cationic, anionic and mixed. Inorganic pigments – coloured solids. Molecular material and fullerides, one- dimensional metals, molecular magnets, inorganic liquid crystals.	7	1		
	1.2	Synthetic methods: conventional heat and beat methods, co- precipitation, sol-gel, chemical vapour deposition, ceramic, alloying, hydrothermal, electrochemical and intercalation methods. Microwave synthesis.	8	2		
	Nanomaterials					
2	2.1	Metal oxide nanostructures: synthesis-sol-gel and electrochemical deposition, applications in photovoltaics, lithium ion batteries, catalysis, gas sensing and biomedical applications.	4	3		
	2.2	Magnetic nanomaterials for energy storage: synthesis- co- precipitation and chemical oxidation, applications of Fe2O3 and Fe3O4 nanomaterials for energy storage.	4	3		
	2.3	Transition metal dichalcogenide nanomaterials: Synthesis- chemical vapour deposition, doping, applications in electronics, photonics and gas sensing.	3	3		
	2.4	Inorganic nanotubes: general synthetic methods- sol-gel and hydrothermal methods, applications.	2	3		
	2.5	Inorganic nanowires: synthesis-vapour phase growth, properties and applications.	2	3		
	Engine	Engineering Materials for Mechanical Construction and Composite Materials				
3	3.1	Composition, mechanical and fabricating characteristics and applications of various types of cast irons, plain carbon and alloy steels, copper, aluminum and their alloys like duralumin, brasses and bronzes, cutting tool materials, super alloys, thermoplastics, thermosets and composite materials.	7	4		

	3.2	Introduction, limitations of conventional engineering materials, role of matrix in composites, classification, matrix materials, reinforcements, metal-matrix composites, polymer-matrix composites, fibre- reinforced composites, environmental effects on composites, applications of composites.	8	4		
	Speciality Polymers					
4	4.1	Preceramic inorganic polymers: carbon Fiber, silicon carbide (SiC), silicon nitride (Si3N4), boron nitride (BN), boron carbide (B4C), aluminum nitride (AlN), phosphorus nitride. Poly(ferrocenylsilanes) as ceramic precursors.	8	5		
	4.2	Sulfur-based inorganic polymers: polythiazyl and polythiol.	3	5		
	4.3	Ferrocene based polymers: synthetic methods, Fc- based polypyrrole and cyclodextrin- synthesis and applications.	4	5		
5	Teacher Specific Content					

Teaching and	Classroom Procedure (Mode of transaction)				
Learning	Lecture sessions, interactive sessions including discussions				
Approach					
	MODE OF ASSESSMENT				
	A. Continuous Comprehensive Assessment (CCA) Total marks: 30				
	i) Assignments				
	ii) MCQ				
Assessment	iii)Class test				
Types	iv)Viva				
	B. End Semester Examination (Total Marks: 70- 2 hrs.)				
	i) Short answer 5 questions (out of 7): $5 \ge 4 = 20$				
	ii) Short essay 5 questions (out of 7): $5 \ge 7 = 35$				
	iii) Essay 1 question (out of 2): $1 \times 15 = 15$				

- P. W. Alkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, *Inorganic Chemistry*, 5th Edn. Oxford University Press, 2012.
- 2. M. Adam, *Inorganic Solids: An introduction to concepts in solid-state structural chemistry*, Wiley–Blackwell, 1974.
- 3. S. M. Bhagyaraj, O. S. Oluwafemi, K. Nandakumar, S. Thomas, Syntheis of

Inorganic Nanomaterials, Elsevier, 2018.

- 4. C M. Lukehart, *Nanomaterials: Inorganic and Bioinorganic perspectives*, John Wiley & Sons Ltd, 2008.
- 5. S. Rajendran, M. Naushad, *Inorganic Materials for Energy, Medicine and Environmental Remediation*, Springer, 2022.
- 6. N. Kumar, K. Sunita, *Essentials in nanoscience and nanotechnology*, 2016.
- 7. N. R. Rao, A. Muller, A. K. Cheetham, The Chemistry of Nanomaterials, Wiley, 2004.
- 8. N. P. Singh, N. C. Singh, Inorganic and Organometallic Polymers, de Gruyter, 2019.
- 9. J. E. Mark, Inorganic Polymers, Oxford University Press, 2005.
- 10. D. Fahlman, Material Chemistry, Springer, 2018.
- 11. J. N. Lalena, D. A. Cleary, E. E. Carpenter, N. F. Dean, *Inorganic materials* synthesis and fabrication, John Wiley & Sons, 2008.
- 12. Sangeeta, J. R. LaGraff, *Inorganic Materials Chemistry Desk Reference*, CRC Press, 2005.
- 13. W. D. Callister Jr., Fundamentals of Materials Science and Engineering, Wiley, 2001.
- 14. Sharma, C. K. Sarkar, *Advanced Nanomaterials and Their Applications*, CRC Press, 2024.
- 15. M. A. Benvenuto, Metals and Alloys, de Gruyter, 2016.

Real Provide Action of the second sec	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	BSc CHEMI	ISTRY(Hon	ıs.)				
Course Name	Analytical C	hemistry					
Type of Course	DSE	DSE					
Course Code	MCE7DSEC	CHE400					
Course Level	400-499						
Course	This course	covers the	fundamenta	als of analyt	ical chem	istry and	
Summary	discusses top	ics such as p	precision, ac	curacy and er	rors. Addit	tionally, it	
	encompasses	qualitativ	e analysis	techniques,	safety]	protocols,	
	titrimetric a	analysis, a	nd the p	rinciples and	d applica	ations of	
Semester	VII		Credits		4	Total	
Course Details	Learning	Learning Lecture Tutorial Practical Other Hours					
	Approach 4 0 60						
Pre-requisites, if any							

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PO No			
No.		Domains *				
1	Explain fundamental measurement concepts, and errors in analytical chemistry.	U	1,2,3,10			
2	Develop safe laboratory methods of chemical analysis.	An	1,2,3			
3	Develop a comprehensive knowledge of titrimetric analysis including redox titrations, complexometric titrations, conductometric titrations and potentiometric titrations.	А	1, 2,3			
4	Apply the principles of gravimetric analysis.	А	1, 2,3			
5	Analyse various separation and purification techniques of compounds.	An	1, 2,3			
6	Distinguish between different chromatographic methods based on their principle and mechanism.	An	1, 2,3,10			
*Rem	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs	CO No.					
		Introduction	1						
	1.1	The role of analytical chemistry, qualitative and quantitative analysis, general features of a typical quantitative analysis- choosing a method, acquiring the sample, processing the sample, eliminating interferences, calibration and measurement, calculation and evaluation of results. Case study illustrating the use of analytical chemistry to solve a problem.	6	1					
1	1.2	Calculations used in analytical chemistry: units of measurement- mass and weight, the mole, concentrations of solutions, p- functions, density and specific gravity. Chemical stoichiometry and stoichiometric calculations.	5	1					
	1.3	Errors in chemical analysis: mean and median, precision and accuracy, absolute error and relative error. Random, systematic and gross errors. Sources and effects of systematic errors. Minimising systematic errors.	4	1					
	Chemicals apparatus and unit operations of analytical chemistry								
	2.1	Selecting and handling reagents and other chemicals.	2	2					
	2.2	Cleaning and marking of laboratory ware.	2	2					
2	2.3	Evaporating liquids, measuring mass, equipment and manipulations associated with weighing, measuring volume, calibrating volumetric glassware.	3	2					
	2.4	The laboratory notebook.	1	2					
	2.5	Sampling, standardization, and calibration.	4	2					
	2.6	Safety in the laboratory- the four principles of safety, personal protective equipment: eye protection, lab coat, shoes and long pants, gloves, respiratory protection and masks, hair, lead apron and shields.	3	2					
		Titrimetric and Gravimetric Analysis							
3	3.1	Titrimetric analysis – basic concepts of redox reactions, redox titrations involving KMnO4, and K2Cr2O7, titration curves, redox indicators.	4	3					

	3.2	6	3			
	Conductometric and potentiometric titrations –3.3principle, examples and graphical representation.					
	3.4	Gravimetric analysis: unit operations in gravimetric analysis - illustrations using iron and barium estimation.	3	4		
		Separation and Purification of compounds				
	4.1	Separation and purification techniques: filtration, recrystallization, precipitation, distillation, fractional distillation, solvent extraction and sublimation.	4	5		
4	4.2	Chromatography- principle and classification. Chromatographic techniques: paper chromatography, thin layer chromatography, Rf-values.	3	6		
	4.3	Principle and applications of column chromatography, high- performance liquid chromatography (HPLC), gas chromatography, gel permeation chromatography (GPC), ion exchange chromatography, and reverse phase chromatography.	8	6		
	Teacher Specific content					
5						

Teaching	Classroom Procedure (Mode of transaction)				
and	 Lecture (chalk & board, PowerPoint presentation) 				
	 Group discussion 				
Learning Approach	• Peer teaching				
Approach	 Demonstration of experiments 				
	 Hands-on training 				
	MODE OF ASSESSMENT				
	A. Continuous Comprehensive Assessment (CCA) Total marks: 30				
	i) Assignments MCQ				
	ii) Class test				
Assessment	iii) Viva				
Types	B. End Semester Examination (Total Marks: 70- 2 hrs.)				
	i) Short answer 5 questions (out of 7): $5 \ge 4 = 20$				
	ii) Short essay 5 questions (out of 7): $5 \ge 7 = 35$				
	iii) Essay 1 question (out of 2): 1 x 15 = 15				

- 1. A. Skoog, D. M. West, and S. R. Crouch, *Fundamentals of Analytical Chemistry* 9th Edn. Cengage Learning, 2013.
- 2. Vogel's *Textbook of Quantitative Chemical Analysis*, 6th Edn. Pearson Education Ltd., 2009.
- 3. G. D. Christian, Analytical Chemistry, JohnWiley and Sons, 2020.
- 4. R. Puri, L. R. Sharma, Kalia, *Principles of Inorganic Chemistry*, Milestone Publishers, New Delhi, 2020.
- 5. A. Lee, Scientific Endeavor, Addison Wesley Longman, 2016.
- 6. A. Gupta, Analytical Chemistry, Pragati Prakashan, 2020.
- 7. R. Gopalan, *Inorganic Chemistry for Undergraduates*, Universities Press, Hyderabad, 2009.
- 8. Satya Prakash, *Advanced Inorganic Chemistry, Volume 1*, 5th Edition, S. Chand and Sons, New Delhi, 2012.
- 9. R. Shobha, M. Banani, Essentials of Analytical Chemistry, Pearson Education, 2017.

REAL PROPERTY OF THE PROPERTY	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	BSc CHEM	ISTRY(Hons	i.)				
Course Name	Biophysical	Chemistry					
Type of Course	DSE						
Course Code	MCE7DSE0	CHE401					
Course Level	400-499						
Course Summary		explores how chemical kin cocesses.			-		
Semester	VII	VII Credits 4 Total					
Course Details	Learning Approach	Approach					
Pre-requisites, if any		4				60	

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No			
1	Apply the principles of thermodynamics to life processes.	А	1,2			
2	Analyse biological equilibrium processes.	An	1,2			
3	Examine kinetic aspects of biological processes.	An	1,2			
4	Apply the principles of quantum mechanics to simple chemical and biological systems.	А	1,2			
*Remem	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Content for	· Classroom	transaction	(Units)
--------------------	-------------	-------------	---------

Module	Units	Course description	Hrs	CO No.
		Thermodynamics		
	1.1	Work, heat, internal energy, enthalpy, heat capacity. The first law of thermodynamics. The enthalpy of phase transition- case study- thermal denaturation of a protein.	5	1
	1.2	The second law of thermodynamics, entropy and entropy change. Entropy change and life. The Third Law of thermodynamics.	4	1
	1.3	Spontaneity and Gibbs free energy. Free energy as maximum work. Proteins- primary, secondary, tertiary and quaternary structures. Gibbs energy change of protein assembly. Basic idea of metabolism and free energy changes of metabolic cycles.	6	1
		Equilibrium		
2	2.1	Molar free energy of reaction. Reactions at equilibrium and Gibbs free energy change. Relationship between the Gibbs energy and equilibrium constant. Acid–base equilibria. Catalysts and equilibrium	6	2
	2.2	Temperature and equilibrium, coupled reactions. Active transport. Binding of oxygen to myoglobin and haemoglobin-thermodynamic aspects, cooperativity and allosteric effect. Standard Gibbs energy of formation and calculation of standard reaction Gibbs energy.	9	2
		Chemical Kinetics		
3	3.1	Rate of reaction, rate laws and rate constants, order of a reaction, first order and second order reactions. The temperature dependence of reaction rates- the Arrhenius equation and Arrhenius parameters. Reaction rates near equilibrium.	7	3
	3.2	8	3	

4	4.1	Basics of quantum mechanics, electromagnetic radiation, wave properties of matter, quantization of energy and fundamentals of spectroscopy. Types of spectroscopy. The uncertainty principle.	7	4
	4.2	The particle in a box- the electronic structure of β - carotene. Quantum mechanical tunnelling- Scanning probe microscopy (STM and AFM). Particle on a ring- the electronic structure of phenylalanine.	8	4
5		Teacher Specific content		

Teaching and	Classroom Procedure (Mode of transaction)						
Learning	• Lecture sessions						
Approach	 Interactive sessions including discussions 						
	MODE OF ASSESSMENT						
	A. Continuous Comprehensive Assessment (CCA) Total marks: 30						
	i) Assignments						
	ii) MCQ						
Assessment	iii) Class test						
Types	B. End Semester Examination: Total Marks: 70- 2 hrs.						
	i) Short answer 5 questions (out of 7): $5 \ge 4 = 20$						
	ii) Short essay 5 questions (out of 7): $5 \times 7 = 35$						
	iii) Essay 1 question (out of 2): $1 \times 15 = 15$						

- 1. P. Atkins, J. Paula, Physical Chemistry for the Life Sciences, Oxford University Press, 2006.
- 2. D. T. Haynie, *Biological Thermodynamics*, 2nd Edn. Cambridge University Press, 2008.
- 3. P. S. Kalsi, N. Mahanta, *Biophysical Chemistry*, 2nd Edn. New Academic Science Limited, 2014.
- 4. J. L. Burgot, Thermodynamics in Bioenergetics, CRC Press, 2020.
- 5. A. Cooper, Biophysical Chemistry, RSC, 2004.
- 6. J. P. Allen, Biophysical Chemistry, Blackwell Publishing, 2008.
- 7. M. R. Roussel, A life Scientist's Guide to Physical Chemistry, Cambridge University Press, 2012.
- 8. G. G. Hammes, S. H. Schiffer, Physical Chemistry for the Biological Sciences, Wiley, 2015.
- 9. P. Nelson, *Biological Physics: Energy, Information, Life*, www.physics.upenn.edu/pcn/, 2002.
- 10.G. G. Hammes, Thermodynamics and kinetics for the biological sciences, Wiley, 2000.
- 11.P. R. Bergethon, The Physical Basis of Biochemistry, 2nd Edn. Springer, 2010.

A DETERMINE	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	BSc CHEMIST	RY(Hons.)				
Course Name	Nano chemistry	and Techr	nology			
Type of Course	DSE					
Course Code	MCE7DSECHI	E 402				
Course Level	400-499					
Course Summary	This course ex covering synthes nanomaterials.	-		-		
Semester	VII		Credits		4	Total
Course Details	Learning	Lecture	Tutorial	Practical	Others	Hours
	Approach 4 60					
Pre-requisites, if any		1		I I		1

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No			
1	Explain the fundamental concepts of nanomaterials.	U	1,2			
2	Compare bottom-up and top-down approaches in nanomaterial synthesis.	С	1,2			
3	Describe various characterisation techniques of nanomaterials.	An	1,2			
4	Explain the properties of different types of nanomaterials.	U	1,2			
5	Analyse the applications of nanomaterials in various fields.	An	1,2,3,10			
*Remem	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs.	CO No.				
		Introduction						
	1.1	Feynman's hypothesis- scales of nanosystems- Moore's law.	2	1				
	1.2	Different types of nanomaterials. Classification of nanomaterials based on dimensions and origin.	3	1				
	1.3	Nano in nature: lotus-leaf effect, Gecko's feet, butterfly wings, and magneto-tactic bacteria.	2	1				
1	1.4	Bottom-up techniques for the synthesis of nanomaterials: chemical vapour deposition, reduction techniques, solvothermal, sonochemical, biomimetic, molecular self- assembly and sol-gel methods.	4	2				
	1.5	Top-down techniques: mechano-chemical, laser ablation, arc-discharge, sputtering, etching, lithography and electrospinning methods.	4	2				
	Characterization of Nanomaterials							
2	2.1	Imaging through electron microscopy: interaction of electron beam with sample. Scanning electron microscope and transmission electron microscope- comparison, advantages, applications and basic instrumental features.	4	3				
	2.2	Scanning probe microscopy: scanning tunnelling microscope and atomic force microscope-comparison, applications and basic instrumental features.	4	3				
	2.3	Characterisation through spectroscopy: UV- visible, IR, X-ray photoelectron and Auger electron spectroscopy. Secondary ion mass spectrometry. X-ray diffraction, dynamic light scattering and zeta potential analysis methods.	7	3				
		Properties of Nanomaterials						
	3.1	Size effects: quantum confinement, the density of states and high surface area.	2	4				

	3.2	Thermal properties: surface energy, thermal conductivity and melting of nanomaterials.	3	4
3	3.3	Electronic and electrical properties: one dimensional conduction-ballistic conduction, the Coulomb blockade effect, the electron density of states and superconductivity.	4	4
	3.4	Magnetic properties: giant magnetoresistance, finite-size effects and surface effects.	3	4
	3.5	Optical properties: colour of quantum dots, surface plasmon resonance and quantum fluorescence.	3	4
		Applications of Nanoparticles		
	4.1	Medicine and healthcare: applications of nanomaterials in medical diagnosis, advanced drug delivery systems, targeted drug delivery and therapy.	4	5
	4.2	Applications of nanotechnology in integrated circuits, data storage and displays.	2	5
4	4.3	Applications of nanotechnology in water purification and air pollution control.	2	5
	4.4	Piezoelectric nanomaterials, hydrogen generation and storage, batteries and solar energy harvesting.	2	5
	4.5	Chemical and biosensors using nanomaterials and defence applications of nanotechnology.	2	5
	4.6	Applications of grapheme, carbon nanotubes and fullerenes.	3	5
_		Teacher Specific Content		
5				

	Classroom Procedure (Mode of transaction)				
	\circ Interactive instruction (chalk & board method, multimedia				
Teaching and	presentation)				
Learning	 Group discussion 				
Approach	 Peer teaching 				
	 Experimental demonstrations 				
	 Practical training 				
	MODE OF ASSESSMENT				
	A. Continuous Comprehensive Assessment (Total 30 marks)				
	 i) Assignments ii) MCQ 				
Assessment	iii) Class test				
Assessment Types	iv) Viva				
	B. End Semester Examination (Total marks: 70- 2hrs.)				
	i) Short answer 5 questions (out of 7): $5 \ge 4 = 20$				
	ii) Short essay 5 questions (out of 7): $5 \ge 7 = 35$				
	iii) Essay 1 question (out of 2): $1 \ge 15$				

- 1. N. Kumar, K. Sunita, Essentials in Nanoscience and Nanotechnology, Wiley, 2016.
- T. Pradeep NANO: The Essentials: Understanding Nanoscience and Nanotechnology; 1st Edition ed.; McGraw-Hill Education: New York, 2007
- 3. V. S. Muralidharan,; A. Subramania, *Nanoscience and Technology*; Ane Books for, 2009.
- 4. C. P Poole, F. J. Owens, Introduction to Nanotechnology; Wiley, 2003.
- 5. R. Booker, E. Boysen, *Nanotechnology*, Wiley India Pvt Ltd, 2008.
- 6. K. J. Klabunde, Nanoscale Materials in Chemistry; Wiley, 2004.
- 7. G. L. Hornyak, J. Dutta, H. F Tibbals, A. Rao, *Introduction to Nanoscience*; CRC Press, 2008.
- 8. M. Benelmekki, *Nanomaterials: The Original Product of Nanotechnology*; Morgan & Claypool Publishers, 2019.
- 9. C. N. R. Rao, A. Müller, A. K. Cheetham, *Nanomaterials An Introduction. In The Chemistry of Nanomaterials*, 2004, (Chapter 1).
- 10. C. Ngô, M. Van de Voorde, *Nanotechnology in a Nutshell: From Simple to Complex Systems*; Atlantis Press, 2014.
- 11. A. Sengupta, C. K. Sarkar, *Introduction to Nano: Basics to Nanoscience and Nanotechnology*; Springer Berlin Heidelberg, 2015.

SEMESTER VIII

A DECEMBER OF	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)							
Programme	B Sc CHEN	AISTRY(H	ons.)					
Course Name	Advanced (Advanced Coordination and Organometallic Chemistry						
Type of Course	DCC	DCC						
Course Code	MCE8DCC	MCE8DCCCHE400						
Course Level	400-499	400-499						
Course Summary	inorganic mechanisms	chemistry, , organome avimetric ar	covering tallic catal	magnetic j lysis includin	properties, g asymme	nced topics in substitution etric catalysis, entification of		
Semester	VIII		Credits		4			
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Total Hours		
Pre-requisites, if any	Approach2290Basic knowledge in Coordination and Organometallic Chemistry							

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No.
Upon th	ne completion of the course, student will be able to:		
1	Analyse and explain the magnetic properties of coordination complexes	An	1, 2
2	Evaluate the kinetics and mechanism of ligand substitution reactions in coordination complexes.	Е	1, 2
3	Analyse the applications of organometallic compounds in organic synthesis and catalysis	An	1, 2
4	Explain the properties and utility of polyferrocenylsilanes.	U	1, 2
5	Apply gravimetric analysis techniques in estimating metal ions, including nickel (II), copper, iron, and aluminium	А	1, 2

6	Apply qualitative analysis techniques to distinguish and confirm the presence of specific cations, showcasing a	А	1, 2
Remem	comprehensive understanding of cation separation <i>ber (K), Understand (U), Apply (A), Analyse (An), Evaluate (</i>	(E), Create (C)).

Kemember (K), Understand (U), Apply (A), Analyse (An), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course description	Hrs.	CO No.			
	l	Magnetic Properties and Ligand Substitution Mech	anisms	in			
	Coordination Complexes						
	1.1	Magnetic properties of complexes - paramagnetic and diamagnetic complexes, molar susceptibility, Gouy method for the determination of magnetic moment of complexes, spin only magnetic moment.	3	1			
	1.2	Temperature dependence of magnetism- Curie's law, Curie-Weiss law, temperature independent paramagnetism (TIP).	2	1			
1	1.3	Kinetics and mechanism of octahedral substitution- water exchange, dissociative, associative and interchange mechanisms, acid hydrolysis, base hydrolysis, SN ₁ cB mechanism.	4	sms in 3 1 3 1 2 1 4 2 4 2 2 2 2 2 4 2 2 2 versions 3 3 3			
	1.4	Electron transfer reactions: outer sphere mechanism – Marcus' theory, inner sphere mechanism- Taube mechanism, mixed outer and inner sphere reactions, two electron transfer and intramolecular electron transfer.	4	2			
	1.5	Δ and Λ isomers, linkage isomerism: electronic and steric factors affecting linkage isomerism.	2	2			
	0	rganometallic Homogeneous Catalysis & Asymmetr	nmetric versions				
	2.1	Organometallic reagents in organic synthesis – Petasis, Schwartz reagents for organic transformations. Reppe reaction, Dötz reaction.	4	3			
2	2.2	Hydrogenation reactions- H2 hydrogenation and isopropanol transfer hydrogenations catalyzed by Ru(II) complexes, ionic hydrogenation, hydrosilylation.	3	3			
	2.3	Asymmetric catalysis- chiral phosphine ligands (structure only) - P-chiral ligands, BINAP, DIOP, ferrocene based ligands - Josiphos, asymmetric hydrogenation, Noyori hydrogenations, Shvo catalyst, transfer hydrogenation of ketones and	5	3			

		imines, metal-ligand bifunctional catalysis-		
		cooperative effect.		
	2.4	1	3	
	2.5	Organometallic polymers: synthesis, properties and applications of polyferrocenylsilanes.	2	4
		Inorganic Practical -4		
3		 Part-1 Gravimetric Analysis: Estimation of nickel (II) using dimethylglyoxime (DMG) Estimation of copper as CuSCN Estimation of iron as Fe₂O₃ by precipitating iron as Fe(OH)₃. Estimation of Al(III) by precipitating with oxine and weighing as Al(oxine)₃ (aluminium oxinate). 	30	5
4		Part-2 Separation and identification of a mixture of four cations (a mixture of two familiar ions such as Ag ⁺ , Hg ²⁺ , Pb ²⁺ , Cu ²⁺ , Bi ²⁺ , Cd ²⁺ , As ³⁺ , Sn ²⁺ , Sb ³⁺ , Fe ²⁺ , Fe ³⁺ , Al ³⁺ , Cr ³⁺ , Zn ²⁺ , Mn ²⁺ , Co ²⁺ , Ni ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Mg ²⁺ , Li ⁺ , Na ⁺ , K ⁺ and NH ₄ ⁺ and two less familiar metal ions such as Tl, W, Se, Mo, Ce, Th, Ti, Zr, V, U and Li). Minimum four mixtures to be given.	30	6
5		Teacher Specific Content		
5				

	Classroom Procedure (Mode of transaction)
T	 Lecture (chalk &board, PowerPoint presentation)
Teaching and	 Group discussion
Learning	• Peer teaching
Approach	 Demonstration of experiments
	 Hands-on training
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
	Theory:15 Marks
Assessment	i) Quiz
Types	ii) Test for each unit (MCQ/Written)
	Practical (15 marks)
	i) Lab involvement
	ii) Report
	iii)Lab test

B. End Semester examination
Theory: Written examination (35 Marks- 1 Hr.)
i) Short answer 5 questions (out of 7): $5 \times 3 = 15$ marks
ii) Short Essay 2 questions (out of 3): $2 \times 10 = 20$ marks
Practical: 35 Marks-1 Hr.
i) Certified report -10 marks
ii) Procedure- 15 marks
iii) Viva voce- 10 marks

- 1. J.E. Huheey, E.A. Keiter, R.L. Keiter, *Inorganic Chemistry Principles of Structure and Reactivity*, 4th Edn. HarperCollins College Publishers, 1993.
- 2. F.A. Cotton, G. Wilkinson, C.A. Murillo, M. Bochmann, *Advanced Inorganic Chemistry*, 6th Edn, Wiley-Interscience, 1999.
- 3. K.F. Purcell, J.C. Kotz, *Inorganic Chemistry*, Holt-Saunders, 1977.
- 4. P. Powell, *Principles of Organometallic Chemistry*, 2nd Edn. Chapman and Hall, 1988.
- 5. B.E. Douglas, D.H. McDaniel, J. J. Alexander, *Concepts and Models of Inorganic Chemistry*, 3rd Edn. Wiley-India, 2007.
- 6. Sumit Bhaduri, Doble Mukesh, *Homogeneous Catalysis: Mechanism and Industrial Applications*, Wiley Interscience, 2000.
- 7. B.D. Guptha, A.J Elias, Basic Organometallic Chemistry, Universities Press, 2010.
- 8. Astruc, D., Organometallic Chemistry and Catalysis, Springer Verlag, 2007.
- 9. Robert H. Crabtree, *The Organometallic Chemistry of the Transition Metals*, 4th Edn. Wiley Interscience, 2005.
- 10. J. G. de Vries, C. J. Elsevier (Editors), *Handbook of Homogeneous Hydrogenations*, 3 Volumes, WileyVCH, 2006.
- 11. Catherine E. Housecroft, Alan G. Sharpe, Inorganic Chemistry 4th Edn., 2018.

Received and the second	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)								
Programme	B Sc CHEN	B Sc CHEMISTRY(Hons.)							
Course Name	Physical Cl	Physical Chemistry-4							
Type of Course	DCC	DCC							
Course Code	MCE8DCC	CCHE401							
Course Level	400-499								
Course	This course	covers adva	anced aspe	cts of kinetic	theory of g	ases, chemical			
Summary	kinetics, sur	face chemis	stry and ph	ysical chemis	try practica	1.			
Semester	VIII		Credits		4				
Course Details	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Total Hours			
	Approach	2		2		90			
Pre-requisites,									
if any									

٦

COURSE OUTCOMES (CO)

Т

Г

CO No.	Expected Course Outcome	Learning Domains *	PO No		
Upon the	e completion of the course, student will be able to:				
1	Explain the molecular velocities of gases, mean free path, collision diameter and effusion.	U	1, 2		
2	Illustrate the theories of reaction rates and correlate the thermodynamically measurable parameters.	А	1, 2		
3	Compare the nature of reactions in the gas as well as in the solvent phase.	An	1, 2		
4	Assess the theories and applications of adsorption with the help of adsorption isotherms.	Е	1, 2		
5	Explain different methods for the molar mass determination of macromolecules.	U	1, 2		
6	Experiment with three component systems, kinetics, polarimetry and refractometry practicals.	S	1, 2, 9, 10		
	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT

Content for	[·] Classroom	transaction	(Units)
--------------------	------------------------	-------------	---------

Module	Units	Hrs	CO No.	
		Kinetic Theory Of Gases		
1	1.1	Derivation of Maxwell's law of distribution of velocities, graphical representation, experimental verification of the law, most probable velocity, derivation of average, RMS and most probable velocities.	5	1
	1.2	Collision diameter, collision frequency in a single gas and in a mixture of two gases, mean free path, frequency of collision, effusion, the rate of effusion, time dependence of pressure of an effusing gas, the law of corresponding states, transport properties of gases.	5	1
		Chemical Kinetics		
	2.1	Theories of reaction rates: potential energy surfaces. Conventional transition state theory, comparison of the collision theory and conventional transition state theories.	4	2
2	2.2	Thermodynamic formulation of the reaction rate- Eyring equation. Significance of $\Delta G^{\#}$, $\Delta H^{\#}$ and $\Delta S^{\#}$, volume of activation. Effect of pressure and volume on velocity of gaseous reactions. Reactions in solution: Effect of solvent on reaction rate, cage effect. Effect of dielectric constant and ionic strength on reaction rate - Bronsted-Bjerrum equation	6	2, 3
		Surface Chemistry		
	3.1	Multilayer adsorption-BET theory, use of BET isotherms for surface area determination.	3	4
3	3.2	Application of Langmuir adsorption isotherm in surface catalysed reactions, the Eley-Rideal mechanism and the Langmuir-Hinshelwood mechanism, flash desorption. Macromolecules: Different averages, methods of molecular mass determination - osmotic, viscosity, sedimentation and light scattering methods	7	4, 5
		Physical Chemistry IV- Practicals		
4		struction of phase diagram of three component system one pair of partially miscible liquids.	(0)	6
	2. Kine	etics of simple reactions e.g. acid hydrolysis of methyl yl acetate	60	6

	3. Kinetics of reaction between K ₂ S ₂ O ₈ and KI	6
	4. Data analysis of kinetic experiments using spreadsheet program (determination of rate constant).	6
	 5. Polarimetry: Kinetics of the inversion of sucrose in presence of HCl. Determination of the concentration of a sugar solution. Determination of the concentration of HCl. 	6
	 Determination of the relative strength of acids. 6. Refractometry: Identification of pure organic liquids and oils. Determination of molar refractions of pure liquids. Determination of concentration of solutions (KCl-water, 	6
	 glycerol—water). Determination of molar refraction of solids. Study of complex formation between potassium iodide and mercuric iodide system. 	
5	Teacher Specific Content	

	Classroom Procedure (Mode of transaction)
Teaching and	 Lecture sessions (chalk & board, powerpoint presentation)
e	 Interactive sessions and simulations
Learning	 Visual aids like videos and models to enhance understanding
Approach	 Peer discussions
	 Laboratory experiments and hands-on training
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
	Theory (15 Marks)
	i) Assignment
	ii) Quiz
	iii) Test for each for unit (MCQ/Written)
	Practical (15 marks)
Assessment	i) Lab involvement
Types	ii) Report
	iii) Lab test
	B. Semester End examination
	Theory: Written examination (35 Marks-1 Hr)
	i) Short answer 5 questions (out of 7): $5 \times 3 = 15$ marks
	ii) Short Essay 2 questions (out of 3): $2 \times 10 = 20$ marks
	Practical: (35 Marks-1 Hr)
	i) Certified report- 10 marks
	ii) Procedure- 5 marks

iii)Viva voce- 15 marks	
-------------------------	--

- 1. K. J. Laidler, *Chemical Kinetics*, 3rd Edn. Pearson education, 2004.
- 2. I.N. Levine, *Physical Chemistry*, Tata McGraw Hill, 2012.
- 3. R. P. Rastogi, R. R. Misra, *An Introduction to Chemical Thermodynamics*, 6th Edn. Vikas Pub. Pvt. Ltd., 2003.
- 4. P. Atkins and J Paula, *The elements of Physical chemistry*, 7th Edn. Oxford University Press, 2017.
- 5. K. K. Sharma, L.K. Sharma, *A Textbook of Physical Chemistry*, 4th Edn, Vikas publishing House, 2016.
- 6. Puri, Sharma and Pathania, *Principles of Physical Chemistry*, 48th Edn, Vishal Publishing Company, 2020.
- 7. G. M. Barrow, *Physical Chemistry*, Tata McGraw-Hill, 2007.
- 8. G. W. Castellan, *Physical Chemistry*, 4th Edn, Narosa Publishing House, 2018.

Suggested Readings

- 1. P W Atkins, *Physical Chemistry*, Oxford University Press, 12th Edn, 2022.
- 2. R J Silby and R. A. Alberty, M G Bawendi, *Physical Chemistry*, 4th Edn, John Wiley & Sons, 2021.
- 3. J. Rajaram, J. C. Kuriakose, *Chemical thermodynamics: classical, statistical and irreversible*, Dorling Kindersley (India), 2013.
- 4. S. Glasstone, D. Lewis, *Elements of Physical Chemistry*, Macmillan, 1963.

Pinersyam Int	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B Sc CHEN	AISTRY(I	Hons.)			
Course Name	Organic Cl	Organic Chemistry-6				
Type of Course	DCE	DCE				
Course Code	MCE8DCE	CHE400				
Course Level	400-499	400-499				
Course Summary	A comprehe	A comprehensive study of organic synthesis.				
Semester	VIII		Credits		4	
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Total Hours
	Approach	3		1		75
Pre-requisites, if any						

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No.
Upon th	he completion of the course, student will be able to:		
1	Apply the knowledge of synthetic reagents and reactions in organic transformations.	А	1, 2, 3
2	Summarize the stereoselective transformations in organic synthesis.	U	1, 2, 3
3	Analyse the structure and formulate a retrosynthetic scheme for the given organic molecule.	An	1, 2, 3
4	Develop a synthetic route for an organic molecule.	А	1, 2, 3, 6
5	Synthesise biologically important molecules.	S	1, 2, 4
	mber (K), Understand (U), Apply (A), Analyse (An), Evaluate (erest (I) and Appreciation (Ap)	(E), Create (C)	, Skill

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Hrs.	CO No.	
		Synthetic Reagents and Reactions	I	
	1.1	Phosphorous based- triphenylphosphine- Mitsunobu reaction, Wittig reaction, Staudinger reaction; Sulphur based- sulphonium salts, sulphur ylides- Corey-Cheykovsky reaction; Si based reagents- silyl ethers, TMS, TBDMS, TBDPS, TES, TIPS, Julia olefination, Peterson's olefination, NBS, DDQ and DCC, Gilman reagent.	5	1, 4
1	1.2	Carbon-carbon bond formation through coupling reactions - Heck, Suzuki, Stille, Sonogoshira, Negishi, Kumada, Hiyama, Tsuji-Trost, olefin metathesis and McMurry reaction.	5	1, 4
	1.3	Baylis-Hillman reaction, Kulinkovich reaction, Ritter reaction, Sakurai reaction, Tishchenko reaction, Tebbe olefination, Multi Component Reactions- Passerini reaction and Biginelli reaction, Click reactions- Huisgen 1,3-dipolar addition.	5	1, 4
		Oxidation and Reduction		
	2.1	Metal based and non-metal based oxidations of (a) Alcohols to carbonyls- Collins oxidation, Sarett oxidation, PCC; Oppenaeur oxidation, Swern oxidation. (b) Alkenes to diols- Prevost reaction and Woodward modification.	3	1, 4
2	2.2	 (c) Alkenes to alcohols/carbonyls without bond cleavage hydroboration-oxidation, Selenium/chromium based allylic oxidation. (d) Ketones to ester/lactones- Baeyer-Villiger oxidation. 	3	1, 4
	2.3	 Reduction: (a) Catalytic hydrogenation (heterogeneous: Pd, Pt, Rh and Ni; homogeneous: Wilkinson's catalyst) (b) Metal based reductions -Birch reduction, pinacol formation, acyloin formation (c) Hydride transfer reagents from group III and group IV in reductions - NaBH₄, LiAlH₄ and DIBAL-H 	4	1, 4
3		Stereoselective and Total Syntheses		

	3.1	Asymmetric induction- Felkin-Ahn model, Zimmerman-Traxler chair-like transition states.	2	2
	3.2	Noyori asymmetric hydrogenation, Sharpless epoxidation, CBS reduction, Brown allylation and crotylation reactions.	4	2
	3.3	Evans aldol reaction, proline based asymmetric aldol reaction, Jacobsen epoxidation, asymmetric Diels- Alder reaction.	4	2
	3.4	Retrosynthesis- basic concepts, Umpolung reactivity – formyl and acyl anion equivalents, protecting group chemistry- protection and deprotection of hydroxy, carboxyl, carbonyl, and amino groups	4	3, 4
	3.5	Retrosynthetic analysis and total synthesis of atropine, papaverine, longifolene and juvabione.	6	3, 4
		Organic Chemistry-6 Practicals		
4	I. i) ii) iii) II.	nthesis of biologically important molecules Preparation of phenytoin: - Preparation of benzoin using coenzyme catalysed reaction. Preparation of benzil from benzoin. Preparation of phenytoin from benzoin. Preparation of benzocaine Preparation of p-aminobenzoic acid from p-	15	4
	ii) III. IV.	nitrobenzoic acid. Preparation of benzocaine from p-aminobenzoic acid. Preparation of fluorescein. Preparation of 7-hydroxy- 4-methyl coumarin from resorcinol.		
5	ii) III. IV.	nitrobenzoic acid. Preparation of benzocaine from p-aminobenzoic acid. Preparation of fluorescein. Preparation of 7-hydroxy- 4-methyl coumarin from		

	Classroom Procedure (Mode of transaction)
Teaching	 Lecture (chalk & board, powerpoint presentation)
and	 Group discussion
Learning	• Peer learning
Approach	 Demonstration of experiments
	• Hands-on learning
Assessment	MODE OF ASSESSMENT
Types	A. Continuous Comprehensive Assessment (CCA)
rypes	Theory: (25 Marks)
	i) Pop quiz

ii) Assignment
iii) Written test
Practical: (15 Marks)
i) Lab involvement
ii) Report
iii) Lab test
B. Semester End examination
Theory: Written examination (50 Marks- 1.5Hrs)
i) Short answer 7 questions (out of 9): $7 \times 3 = 21$ marks
ii) Short Essay 2 questions (out of 3): $2 \times 7 = 14$ marks
iii) Essay 1 question (out of 2): $1 \times 15 = 15$ marks
Practical: (35 Marks- 1 Hr)
i) Viva voce (10 Marks)
ii) Written test of practical procedures (15 Marks)
iii) Certified report of lab works done (10 Marks)

- 1. J. Clayden, N. Greeves, S. Warren, *Organic Chemistry*; Oxford University Press, USA, 2012.
- 2. F. A. Carey, R. J. Sundberg, Advanced Organic Chemistry: Part A. Structure and Mechanisms; 5th ed.; Springer: New York, 2007.
- 3. F. A. Carey, R. J. Sundberg, *Advanced Organic Chemistry: Part B. Reactions and Synthesis*; 5th ed.; Springer: New York, 2007.
- 4. R. O. C. Norman, J. M. Coxon, *Principles of Organic Synthesis*; 3rd Edn. CRC Press: 1993.
- 5. B. S. Furniss, A. J. Hannaford, V. Rogers, P. W. G. Smith, A. R. Tatchell, *Vogel's Textbook of Practical Organic Chemistry*; 5th Ed.; Pearson Education, 2005.
- 6. S. Warren, P. Wyatt, Organic Synthesis: The Disconnection Approach, 2nd Ed. Wiley, 2008.
- 7. K. N. Jayaveera, S, Subramanyam, K. Y. Reddy, *Practical Medicinal Chemistry*, S. Chand, 2014.

Suggested Readings

1. K. C. Nicolaou, E. J. Sorenson, *Classics in Total Synthesis: Targets, Strategies, Methods*; VCH: Weinheim, 1996.

REFEISTERNIST	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)					
Programme	B Sc CHEN	AISTRY (Hons.)			
Course Name	Group The	ory and Q	uantum Cl	nemistry		
Type of Course	DCE					
Course Code	MCE8DCE	CHE401				
Course Level	400-499					
Course Summary				ations of quantities of computation		istry and group try
Semester	VIII		Credits		4	
Course Details	se Details Learning Approach		Tutorial	Practical/ Practicum	Others	Total Hours
	r pproueir	4				60
Pre-requisites, if any	Basic know	ledge of qu	antum cher	nistry and gro	oup theory	

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No.
Upon the c	completion of the course, student will be able to:		
1	Summarize the quantum mechanical principles of translational, vibrational and rotational motion	U	1, 2
2	Identify the principles of spherical harmonics in solving hydrogen and hydrogen-like systems.	Е	1, 2
3	Evaluate the many-body problem, recognize the necessity of approximation methods in quantum mechanics and to outline the basics concepts of bonding in molecules	А	1, 2
4	Outline the basic concepts of different computational chemistry techniques such as ab initio, semi empirical, density functional theory and molecular mechanics.	U	1, 2
5	Construct the character tables for specific point group based on group theoretical principles	А	1, 2
6	Utilise the group theoretical aspects to predict the vibrational modes and electronic transition modes.	А	1, 2
	er (K), Understand (U), Apply (A), Analyse (An), Evaluate (E st (I) and Appreciation (Ap)	E), Create (C),	Skill

COURSE CONTENT

Content for	Classroom	transaction	(Units)
--------------------	------------------	-------------	---------

Module	Units	Course description	Hrs.	CO No.
		Application of Quantum Mechanics to solvable s	systems	
	1.1	Translational motion: free particle in one-dimension, penetration into and through barriers (a barrier with finite width-tunnelling), wave function in region I, II & III and their plots. Concept of transmittance and reflection.	4	1
1	1.2	Vibrational motion: one-dimensional harmonic oscillator (complete treatment), Hermite equation (solving by method of power series), Hermite polynomials, wave functions- their sketch, energies, harmonic oscillator model and molecular vibrations.	5	1
	1.3	Quantization of angular momentum, quantum mechanical operators corresponding to angular momenta (L_x , L_y , L_z and L^2).	4	1
		Rotational Motion and Hydrogen Like Ator	ns	
	2.1	Rotational motion: the particle on a ring and its solution. Rigid rotor and its solution for energies and wave function, polar diagrams of spherical harmonics. Spherical harmonics as eigen functions of angular momentum operators L_z and L^2 .	6	1
2	2.2	Quantum mechanics of hydrogen-like atoms: Potential energy of hydrogen-like systems. The wave equation in spherical polar coordinates: separation of variables- r, theta and phi equations and their solutions, wave functions and energies of hydrogen- like atoms. Orbitals: Radial functions, radial distribution functions, angular functions, and their plots.	6	2
		Many Body Systems and Computational Chen	nistry	
3	3.1	Many-body problem and the need of approximation methods. Born-Oppenheimer approximation. Variation method- illustration of variation theorem using the trial function $x(a-x)$ for particle in a 1D- box and using the trial function e^{-ar} for the hydrogen atom.	5	3
	3.2	Perturbation method: time-independent perturbation method (non-degenerate case only), first order correction to energy and wave function, illustration	5	3

		by application to particle in a 1D-box with slanted		
		bottom		
	3.3	Chemical bonding: Schrödinger equation for molecules, valence bond (VB) theory, VB theory of H ₂ molecule (elementary idea only) Molecular Orbital (MO) theory, MO theory of H ₂ molecule (elementary idea only). Comparison of MO and VB theories.	5	3
	3.4	Introduction to computational chemistry: scope, potential energy surfaces, global minimum, local minima, saddle points. Tools (methods) of computational chemistry: molecular mechanics, semi empirical methods, Ab initio methods, density functional theory – general introduction. Comparison of ab initio, semi empirical and DFT methods.	5	4
		Group Theory and its Applications		
4	4.1	Reducible and irreducible representations, statement of great orthogonality theorem (GOT) and properties of irreducible representations.	3	5
	4.2	Character table and description of its layout, construction of character tables for C_{2v} and C_{3v} .	3	5
	4.3	Application to vibrational spectroscopy: Standard reduction formula, normal mode analysis of H ₂ O and NH ₃ employing cartesian coordinate method and internal coordinate method. Prediction of IR and Raman activity, rule of mutual exclusion.	4	6
	4.4	Application to electronic spectroscopy: Transition moment integral, direct product, transitions between non-degenerate states – criteria for allowed transitions, prediction of electronic transitions in C_{2v} and C_{3v} using direct product terms. Electronic transitions due to the carbonyl chromophore in formaldehyde	5	6
		Teacher Specific Content		
5		•		

Teaching and Learning ApproachClassroom Procedure (Mode of transaction) Lecture (chalk & board, powerpoint presentation, flipped classroom) Group discussion – thought problems; mind mapping Peer interaction Demonstration using simulations / models
--

	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
	Theory: 30 Marks
	i) Quiz
Assessment	ii) Assignment
Types	iii)Problem based test - Open book
- 5 P **	B. Semester End examination (Theory 70 Marks- 2Hrs)
	i) MCQ $- 10$ marks (1 mark each $- 10$ nos)
	ii) Short answer questions -24 marks (3 marks each -8 out of 10
	nos)
	iii)Long answer questions – 21 marks (7 marks each – 3 out of 5 nos)
	iv)Essay type question – 15 marks (1 out of 2 nos)

- 1. P.W. Atkins, R.S. Friedman, *Molecular Quantum Mechanics*, 4th Edn. Oxford University Press, 2005.
- 2. I. N. Levine, *Quantum Chemistry*, 7th Edn. Pearson Education Inc., 2016.
- 3. D.A. McQuarrie, *Quantum Chemistry*, University Science Books, 2008.
- 4. R.K. Prasad, Quantum Chemistry, New Age International, 2001.
- 5. T. Engel, *Quantum Chemistry and Spectroscopy*, Pearson Education, 2006.
- 6. E.G. Lewars, *Computational Chemistry: Introduction to the Theory and Applications* of Molecular and Quantum Mechanics, 2nd Edn. Springer, 2011.
- 7. J.H. Jensen, *Molecular Modeling Basics*, CRC Press, 2010.
- 8. F. Jensen, *Introduction to computational chemistry*, 2nd Edn. John Wiley & Sons, 2007.
- 9. A. Leach, *Molecular Modelling: Principles and Applications*, 2nd Edn. Longman, 2001.
- C.J. Cramer, *Essentials of Computational Chemistry: Theories and Models*, 2nd Edn. John Wiley & Sons, 2004.
- 11. D.C. Young, *Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems*, John Wiley & Sons, 2001.
- 12. F.A. Cotton, Chemical Applications of Group Theory, 3rd Edn. Wiley Eastern, 1990.
- 13. S. Swarnalakshmi, T. Saroja, R.M. Ezhilarasi, *A Simple Approach to Group Theory in Chemistry*, Universities Press, 2008.
- 14. A.S. Kunju, G. Krishnan, Group Theory and its Applications in Chemistry, PHI Learning, 2010.
- 15. K. Veera Reddy, *Symmetry and Spectroscopy of molecules*, New Age International (P) Ltd.,1999.

Real Provide Action of the second sec	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	B Sc CHEN	IISTRY(H	ons.)				
Course Name	Instrument	al Methods	of Chemic	al Analysis			
Type of Course	DCE	DCE					
Course Code	MCE8DCE	MCE8DCECHE402					
Course Level	400-499						
Course Summary			•	instrumentat s, and surface	1	plications of al analytical	
Semester	VIII		Credits		4	Total	
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours	
	Approach	4				60	
Pre-requisites, if any	Nil						

٦

COURSE OUTCOMES (CO)

Т

Г

CO No.	Expected Course Outcome	Learning Domains *	PO No.			
Upon the	e completion of the course, student will be able to:					
1	Describe the basic principles and instrumentation of various chromatographic techniques.	U	1, 2			
2	Evaluate the efficiency and effectiveness of different chromatographic methods.	Е	1, 2			
3	Analyse the basic principles, instrumentation, limitations and applications of various techniques for surface analysis	An	1, 2			
4	Analyse the basic principles, instrumentation and applications of various thermal analytical techniques.	An	1, 2			
*Remem	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill					
(S), Inter	rest (I) and Appreciation (Ap)					

UDSE CONTENT

COURSE Content for		NT oom transaction (Units)	
Module	Units	Course description	Hrs.
		Introduction to chromatography	
	1.1	Adsorption and partition column chromatography- methodology, advantages, limitations and applications.	3
1	1.2	Thin-layer chromatography- introduction, principle, methodology, Rf values, advantages, limitations, and applications.	4
	1.3	Paperchromatography-Introduction,methodology,developmenttechniques,advantages, limitations, and applications	4
	1.4	Electrophoresis-introduction, factors affecting electrophoretic mobility, techniques of paper, gel and capillary electrophoresis and its applications.	4
		GC, HPLC and Ion exchange chromatogra	phy
	2.1	Gas chromatography - introduction, theory, instrumentation, derivatization, temperature programming, advantages, limitations and applications, hyphenated GC techniques (GC-MS, GC-IR, GC-GC, or 2D GC).	6
2	2.2	High-performance liquid chromatography (HPLC)- introduction, theory, instrumentation, advantages and applications, hyphenated techniques in HPLC.	5
	2.3	Ion exchange chromatography- introduction, classification, ion exchange resins, properties, mechanism of the ion exchange process, factors affecting ion exchange, methodology and applications.	4
		Surface Analysis	

		affecting ion exchange, methodology and applications.		
		Surface Analysis		
	3.1	X-Ray photoelectron spectroscopy- instrumentation and sample introduction, applications.	3	3
3	3.2	Auger electron spectroscopy- instrumentation and applications.	3	3
	3.3	Secondary ion mass spectrometry- instrumentation, applications, ToF-SIMS.	3	3
	3.4	SEM- basic principles, instrumentation and applications	2	3

CO No.

1, 2

1, 2

1, 2

1, 2

1, 2

1, 2

1, 2

	3.5	STM- basic principles, instrumentation, and applications.	2	3
	3.6	AFM- basic principles, instrumentation, and applications.	2	3
		Thermal Analysis		
	4.1	Thermogravimetry (TGA)- instrumentation, analytical applications of thermogravimetry , derivative thermogravimetry	3	4
	4.2	Differential Thermal Analysis (DTA) - instrumentation and analytical applications.	3	4
4	4.3	Differential Scanning Calorimetry (DSC) - instrumentation and applications.	3	4
	4.4	Hyphenated thermal methods.	1	4
	4.5	Thermometric titrimetry.	1	4
	4.6	Microcalorimetry- basic principles and applications of micro-DSC.	2	4
	4.7	Thermomechanical analysis and Dynamic mechanical analysis- applications of TMA and DMA.	2	4
5		Teacher Specific Content		
5				

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture sessions/interactive sessions/ case studies/ from various scientific fields (like environmental science, pharmaceuticals, forensics) to illustrate how different techniques are applied practically.
Assessment Types	MODE OF ASSESSMENT A. Continuous Comprehensive Assessment (CCA) Theory: (30 Marks) i) Assignment -5 Marks ii) MCQ -10 Marks iii) Viva -5 Marks iv) Class Test - 10 Marks
	 B. Semester End examination (Total 70 Marks- 2 Hrs) i) Short answer 5 questions (out of 6): 5 x 4 =20 ii) Short essay 5 questions (out of 7): 5 x 7 = 35 iii) Essay 1 question (out of 2): 1 x 15 = 15

- 1. J W. Robinson, E M. Skelly Frame, G M. Frame II, *Undergraduate Instrumental Analysis*, 7th Edition, Taylor & Francis, 2014.
- 2. M D Graef, M E. McHenry, *Introduction to TEM, SEM, and AFM: The Practical Approach to Materials Characterization*, 1st Edition, CRC Press, 2018.
- 3. J W. Robinson, E M S Frame, and G M. Frame II, *Instrumental Analytical Chemistry*, CRC Press, 2021.
- 4. F A Settle, *Handbook of Instrumental Techniques for Analytical Chemistry*, Prentice Hall, 1997.
- 5. D A. Skoog, F. J Holler, S R. Crouch, *Principles of Instrumental Analysis*, 7th Edn. Brooks/Cole, 2020.
- 6. D A. Skoog, D M. West, F. J Holler, S R. Crouch, *Fundamentals of Analytical Chemistry*, 9th Edn. Brooks/Cole, 2014.
- 7. P. J. Haines, *Principles of Thermal Analysis and Calorimetry*, Royal Society of Chemistry, 2002.
- 8. E Lundanes, Chromatography: Basic Principles, Sample Preparations and Related Methods, Wiley-VCH, 2013.
- 9. R Stafford, Chromatography: Principles and Instrumentations, Nyresearch Press, 2020.

Renorgy and State	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	B Sc CHEN	/ISTRY(I	Hons.)				
Course Name	Molecular 3	Modelling					
Type of Course	DCE						
Course Code	MCE8DCE	MCE8DCECHE403					
Course Level	400-499						
Course Summary	covering Ha	This course provides a comprehensive insight into molecular modelling covering Hartree Fock Method & Post Hartree Fock Methods, various computational chemistry methods and applications of computational chemistry software.					
Semester	VIII		Credits		4	Total	
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours	
		4				60	
Pre-requisites, if any	Nil						

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon th	he completion of the course, student will be able to:		
1	Demonstrate the need for the approximations to the Hamiltonian.	U	1, 2
2	Classify different types of basis sets.	U	1, 2
3	Compare and contrast different methods of computational chemistry.	An	1, 2, 3
4	Utilize GAMESS software to solve molecular systems.	А	1, 2, 4, 9, 10
5	Utilize Autodock software to predict protein-ligand interactions.	An	1, 2, 3, 4, 9
	mber (K), Understand (U), Apply (A), Analyse (An), Evalua erest (I) and Appreciation (Ap)	te (E), Create	(C), Skill

COURSE CONTENT

Content for	[·] Classroom	transaction	(Units)
--------------------	------------------------	-------------	---------

Module	Units	Course description	Hrs	CO No.			
	Hartree Fock Method & Post Hartree Fock Methods						
	1.1	Multi-electron atoms. Hartree method, spin multiplicity, Slater determinant, properties of Slater determinant, Hartree-Fock (HF) equations. Secular determinant, restricted and unrestricted HF models.	5	1			
	1.2	The Fock matrix, Roothan Hall equations, elements of the Fock matrix (elementary ideas only), steps for HF calculation, Koopmann theorem.	5	1			
1	1.3	The need for post HF methods. electron correlation, post HF methods: configuration interaction and Møller Plesset perturbation theory (elementary ideas only)	3	1			
	1.4	Roothan's concept of basis functions, Slater type orbitals (STO), Gaussian type orbitals (GTO), sketches of STO and GTO. Differences between STOs and GTOs.	3	2			
	1.5	Classification of basis sets – minimal basis sets; Pople basis sets (with polarization and diffuse functions), correlation consistent basis sets; double zeta, triple zeta and quadrupole zeta basis sets, split valence basis set, Hartree Fock limit.	4	2			
		Computational Methods					
2	2.1	Semiempirical methods: introduction, neglect of differential overlap method (NDO), complete neglect of differential overlap (CNDO), modified neglect of differential overlap (MNDO); Austin Model 1, parametric method 3 (PM3), zero differential overlap (ZDO) (concepts only). Comparison of semiempirical methods. Software used for semiempirical calculations.	5	3			
	2.2	Ab Initio method: introduction, computation of correlation energy, computation of Slater determinant of excited states, Möller-Plesset perturbation and coupled cluster method.	4	3			
	2.3	Density functional theory: introduction, electron density, development of DFT, The functional, Hohenberg and Kohn theorem, Kohn and Sham method, density functionals – exchange and	6	3			

		correlation functionals with examples, DFT		
		methods, applications of DFT, performance of DFT,		
		advantages of DFT in biological chemistry		
		Molecular Mechanics (MM): introduction, basic		
		theory- bond stretching, angle bending, torsional		
	2.4	strain, non-bonded interactions. Force fields – MM2,	4	3
		MM3, MM4, AMBER, CHARMM, Merck		
		Molecular force field, consistent force field,		
		parameterization.		
	2.5	Comparison between semiempirical, Ab Initio, DFT	1	3
		and MM methods – merits and demerits.	_	_
		Computational Software		
		Introduction to GAMESS. Setting up the input file		
	3.1	with run type - geometry optimization, frequency		
		calculation and single point energy calculations. \$	5	4
		groups, format for input file. Hands-on training using		
3		the software		
		Input for molecule – cartesian coordinates and Z-		
		matrix. Z matrix- rules, z-matrix for linear molecules		
	3.2	like diatomic molecules, acetylene, hydrogen	5	4
		cyanide and polyatomic molecules like water,		
		ammonia, boron hydride and methane.		
		Docking		
		Introduction to docking (basic ideas only), protein		
		ligand interactions; setting up the protein and ligand		
		using babel and pymol; predicting ADMET of the		
4	4.1	molecule using PreADMET application; docking	10	5
	7.1	procedures using autodock software and result	10	5
		analysis with visualization of interactions using		
		discovery studio. Hands-on training using the		
		software.		
5		Teacher Specific Content		
3				
1	1			

	Classroom Procedure (Mode of transaction)							
Teaching and	o Lecture (chalk & board, PowerPoint presentation, flipped							
Learning	classroom)							
Approach	 Group discussion – thought problems; mind mapping 							
Approach	• Peer interaction							
	 Demonstration using simulations / models 							

	MODE OF ASSESSMENT				
	A. Continuous Comprehensive Assessment (CCA)				
	Theory: (30 Marks)				
	i) Quiz				
Aggaggmant	ii) Assignment				
Assessment	iii) Problem based test - Open book				
Types	iv) Examinations				
	B. Semester End examination (Total 70 Marks-2 Hrs)				
	i) MCQ $- 10$ marks (1 mark each $- 10$ nos)				
	ii) Short answer questions – 24 marks (3 marks each – 8 out of 10 nos)				
	iii)Long answer questions – 21 marks (7 marks each – 3 out of 5 nos)				
	iv)Essay type question – 15 marks (1 out of 2 nos)				

- 1. K. I. Ramachandran, G. Deepa, K. Namboori, *Computational Chemistry and Molecular Modeling Principles and Applications*, Springer, 2008
- 2. P.W. Atkins, R.S. Friedman, *Molecular Quantum Mechanics*, 4th Edn. Oxford University Press, 2005.
- 3. A. Szabo, N. S. Ostlund, *Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory*, Dover Books on Chemistry, 1996.
- 4. A. Leach, *Molecular Modelling: Principles and Applications*, 2nd Edn. Longman, 2001.
- 5. E.G. Lewars, *Computational Chemistry: Introduction to the Theory and Applications* of Molecular and Quantum Mechanics, 2nd Edn. Springer, 2011.
- 6. J.H. Jensen, *Molecular Modeling Basics*, CRC Press, 2010.
- 7. F. Jensen, *Introduction to computational chemistry*, 2nd Edn. John Wiley & Sons, 2007.
- C.J. Cramer, *Essentials of Computational Chemistry: Theories and Models*, 2nd Edn. John Wiley & Sons, 2004.
- 9. M. Tuckerman, *Statistical Mechanics: Theory and Molecular Simulation*, Oxford University Press, 2010.

REAL FRANK	MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)						
Programme	B Sc CHEN	AISTRY(I	Hons.)				
Course Name	Crystallogr	aphy and	Electroch	emistry			
Type of Course	DCE						
Course Code	MCE8DCE	MCE8DCECHE404					
Course Level	400-499						
Course Summary				cal chemistry and electro	-	dealing with chniques.	
Semester	VIII		Credits		4		
Course Details	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Total Hours	
	Approach	4				60	
Pre-requisites, if any							

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No			
Upon th	ne completion of the course, student will be able to:					
	Discuss the basic concepts of crystal systems like unit cell,					
1	lattice and deduce the crystal structure of NaCl and KCl	An	1, 2, 3			
	from XRD patterns					
2	Distinguish different diffraction methods and correlate the	А	1 2 2			
Ζ.	structure factor with the peak intensity.	A	1, 2, 3			
2	3 Describe the structure of ionic solution and interpret the laws		1.2			
5	governing ionic conductivity.	U	1, 2			
4	Explain the features of concentration cells and fuel cells.	U	1, 2			
5	Explain the causes of corrosion, prevention methods.	U	1, 2			
	Learn the basic principles of voltammetry and describe					
6	voltammogram by analysing the peak current and peak	U	1, 2			
	potential.					
7	Apply the theory behind electroanalytical techniques to	٨	1.2			
/	quantitative and qualitative analysis.	А	1, 2			
*Remen	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill					
(S), Int	erest (I) and Appreciation (Ap)					

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Units Course description					
		Crystallography					
1	1.1	Symmetry in crystals: symmetry elements – proper rotation (order of axis – 1, 2, 3, 4 and 6 – derivation), mirror plane, rotary inversion axis. 32 crystallographic point groups (derivation not expected), Hermann- Mauguin notation and corresponding Schoenflies notations, translational symmetry elements - glide planes and screw axes, fourteen Bravais lattices, space groups (concept only). Space groups of triclinic and monoclinic systems.	5	1			
	1.2	Miller indices, inter-planar spacing and method of determining lattice types, reciprocal lattices. X-ray diffractometer: single crystal and powder pattern methods (experimental part). Analysis of powder diffraction patterns of NaCl and KCl. Debye-Scherrer equation.	6	1			
	1.3	Crystal growth techniques. Structure factor: atomic scattering factor, coordinate expression for structure factor	4	2			
		Advanced Electrochemistry					
	2.1	Debye-Huckel theory, derivation of Debye-Huckel- Onsager equation, validity of DHO equation for aqueous and non-aqueous solutions, Debye-Huckel limiting law (no derivation) qualitative and quantitative tests of Debye-Huckel limiting law, deviations from DHLL.	10	3			
2	2.2	Concentration cells – with and without transference, liquid junction potential, electrode double layer, electrode-electrolyte interface, different models of double layer, theory of multilayer capacity, electro capillary, Lippmann equation, membrane potential. Fuel cells- theory and working of fuel cells- methanol fuel cell, H ₂ -O ₂ fuel cell and solid oxide fuel cells.	10	4			
	2.3	Corrosion and methods of prevention, Pourbaix diagram and Evans diagrams. Electrode polarization:- overvoltage: hydrogen and oxygen overvoltage, theories of overvoltage, Tafel equation and its significance.	10	5			

		Electro Analytical Techniques		
3	3.1	Electroanalytical techniques: classification – interfacial and bulk methods; idea of static and dynamic methods.	1	6
	3.2	Polarography- decomposition potential, residual current, migration current, supporting electrolyte, diffusion current, polarogram, half wave potential, limiting current density, polarograph, explanation of polarographic waves. The dropping mercury electrode, advantages and limitations of DME, quantitative analysis- pilot ion procedure, standard addition methods, qualitative analysis - determination of half wave potential of an ion, advantages of polarography.	8	6, 7
	3.3	Cyclic voltammetry – basic principles and fundamentals; cyclic voltammogram for a reversible and irreversible redox process, Scan rate. Amperometric titrations: General principles of amperometry, instrumentation, application of amperometry in the qualitative analysis of anions and cations in solution, merits and demerits of amperometric titrations.	6	7
5		Teacher Specific Content		
5				

	Classroom Procedure (Mode of transaction)
Teaching and Learning	 Lecture sessions (chalk & board, powerpoint presentation)
	 Interactive sessions and simulations
	 Visual aids like videos and models to enhance understanding
Approach	 Peer discussions
	 Laboratory experiments and hands-on training
	MODE OF ASSESSMENT
	A. Continuous Comprehensive Assessment (CCA)
	Theory: (30 Marks)
A	i) Pop Quiz
Assessment	ii) Assignment
Types	iii) Test for each unit (MCQ/written)
	B. Semester End examination
	Theory: Written examination (70 Marks-2 Hrs)
	i) MCQ $- 10$ marks (1 mark each $- 10$ nos)
	ii) Short answer questions – 24 marks (3 marks each – 8 out of 10 nos)
	iii)Long answer questions – 21 marks (7 marks each – 3 out of 5 nos)

	iv)Essay type question – 15 marks (1 out of 2 nos)
--	--

- 1. R P W Atkins, *Physical Chemistry*, 12th Edn. Oxford University Press, 2018.
- 2. N B Hannay, Solid State Chemistry, Prentice Hall. 1967.
- 3. A. McQuarrie, J. D. Simon, *Physical Chemistry A molecular Approach*, Viva Books Pvt. Ltd., 2019.
- 4. Anthony R. West, Solid State Chemistry and its Applications, Wiley Eastern, 2018.
- 5. O. Simoska, S. D. Minteer, *Techniques in Electroanalytical Chemistry*, American Chemical Society, 2022.
- 6. S. Glasstone, An Introduction to Electrochemistry, East-West Press (Pvt.) Ltd. 2006.
- 7. G. Raj, Advanced Physical Chemistry, Goel publishing house, 2016.
- 8. R. J. Silby and R. A. Alberty, M G Bawendi, *Physical Chemistry*, 4th Edn., John Wiley & Sons, 2015.
- 9. A. J. Bard and L. R. Faulkner, *Electrochemical methods: Fundamentals and Applications*, 2nd Edn., Wiley, 2022.

Suggested Readings

- 1. G. K. Vemulapalli, *Physical Chemistry*, Prentice-Hall of India Pvt. Ltd, 1996.
- 2. S. Glasstone, D. Lewis, *Elements of Physical Chemistry*, Macmillan, 1963.
- 3. I. N. Levine, *Physical Chemistry*, Tata McGraw Hill, 2011.
- 4. G. M. Barrow, Physical Chemistry, Tata McGraw-Hill, 2007

Internship Evaluation

All students shall undergo summer internship or apprenticeship in a firm, industry or organization; or training in labs with faculty and researchers or other higher education institutions (HEIs) or research institutions after completion of the fourth semester.

Evaluation scheme (Total 50 marks)

1) Internal Evaluation (15 marks)

(Internal marks may be obtained from the organization/institution where the student is doing internship using the following format)

Chemistry Undergraduate Student Evaluation Form for Internship		
Internship Details:		
Student Name:		
Date of Evaluation:		
Duration of Internship:		
Mentor Name:		
Instructions: Please rate the student's performance based on the behaviour during the internship. Provide specific examples or a support your ratings.		
1. Technical Skills and Problem Solving (Marks out of 3)	:	
2. Communication Skills and Collaboration (Marks out of 3) :		
3. Professionalism (Marks out of 3)	:	
4. Adaptability (Marks out of 3)	:	
5. Overall Performance (Marks out of 3)	:	
Total (out of 15)	:	
Comments and Recommendations: (Provide specific comments on the student's strengths, areas for improvement, and any additional feedback or recommendations for their future development.)		
Mentor Signature: (Insert Mentor's Signature) :		
Date: (Insert Date of Evaluation) :		
Date. (Insert Date of Evaluation)		

2) Final Evaluation (35 marks)

Report (20 marks)

i)	Relevance	: 5 marks
ii)	Professionalism & ethical considerations: 5 marks	
iii)	Result Analysis	: 5 marks
iv)	Conclusions	: 5 marks

Viva voce (15 marks)

(Student's skills, work ethics, professionalism and contribution to the organisation may be evaluated through viva)

Project Evaluation

I. <u>Project with 12 credits (200 marks) (For students who are opting Honors with</u> <u>Research)</u>

1) Internal Evaluation (60 marks)

i) Initiative and Independence	: 10 marks
ii) Technical Skills	: 10 marks
iii) Problem Solving	: 10 marks
iv) Communication Skills	: 10 marks
v) Professionalism	: 10 marks
vi) Overall Performance	: 10 marks

(If the student is doing project in any outside institution, internal marks may be obtained from there (from the project supervisor))

2) Final Evaluation (140 marks)

i) Novelty of the work	: 20 marks
ii) Experimental Section	: 10 marks
iii) Results and Discussion	: 20 marks
iv) Conclusion	: 10 marks
v) Literature Survey	: 10 marks
vi) Presentation of the work	: 30 marks
vii) Viva voce	: 40 marks

II. <u>Project with 8 credits (100 marks) (For students who are opting Honors without</u> <u>Research)</u>

1) Internal Evaluation (30 marks)

- i) Initiative and Independence : 5 marks
 ii) Technical Skills : 5 marks
 iii) Problem Solving : 5 marks
 iv) Communication Skills : 5 marks
 v) Professionalism : 5 marks
- vi) Overall Performance : 5 marks

(If the student is doing project in any outside institution, internal marks may be obtained from there (from the project supervisor))

2) Final Evaluation (70 marks)

i) Novelty of the work	: 10 marks	
ii) Experimental Section	: 5 marks	
iii) Results and Discussion	: 10 marks	
iv) Conclusion	: 5 marks	
v) Literature Survey	: 5 marks	
vi) Presentation of the work : 15 marks		
vii) Viva voce	: 20 marks	