MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous -Affiliated to MG University, Kottayam)

UNDERGRADUATE PROGRAMMES

(HONOURS)SYLLABUS

MCE-UGP (Honours)

(2024AdmissionOnwards)

Faculty : Science

BoS: Mathematics

Programme: B.Sc. Mathematics Honours

Maharaja's College, Ernakulam (Govt. Autonomous) Park Avenue Road, Marine Drive Ernakulam– 682011, Kerala, India

Contents

Sl. No	Title	Page No
1	Preface	3
2	Board of Studies	4
3	Curricular Structure of the MCE –UG (Honours) Programme	5
4	MCE Programme Outcomes(POs)	7
5	Syllabus Index: MCE–UG (Honours) Programme in B.Sc. (Honours) Mathematics	8
6	Syllabus: First Semester	12
7	Syllabus: Second Semester	25
8	Syllabus: Third Semester	39
9	Syllabus: Fourth Semester	78
10	Internship	123
11	Syllabus: Fifth Semester	125
12	Syllabus: Sixth Semester	158
13	Syllabus: Seventh Semester	192
14	Syllabus: Eighth Semester	223
15	Project & Online Courses	246

Preface

Maharaja's College is proud to present its undergraduate Mathematics curriculum, meticulously designed to align with the recommendation of UGC. This program, spanning four years, equips students with a robust foundation in mathematical principles, fosters critical thinking, and ignites a passion for exploration within the fascinating world of Mathematics.

This curriculum reflects the philosophy of a student-centric approach. We've moved away from a purely theoretical approach, incorporating project-based learning, real-world applications, and interdisciplinary connections. Students will not only master core mathematical concepts but also develop the ability to apply them to solve problems relevant to various fields like science, engineering, economics, and computer science.

Our program offers a diverse range of courses, catering to a variety of interests and career aspirations. Students can delve into areas like linear algebra, calculus, differential equations, abstract algebra, discrete Mathematics, and more. They will also gain valuable research experience through projects and elective courses, preparing them for postgraduate studies or careers that leverage quantitative skills. We integrate theoretical aspects with practical applications, helping students see the relevance of Mathematics in the real world. The curriculum offers a variety of electives, allowing students to tailor their learning journey based on their interests and career goals. We encourage students to develop analytical thinking skills through problem-solving exercises and project work. We leverage technology to enhance learning, using simulations, visualization tools, and computational software where appropriate.

This curriculum empowers students to not only excel in Mathematics but also become wellrounded individuals with strong analytical, problem-solving, and critical thinking skills – qualities that are invaluable in today's dynamic world.

Welcome to the exciting world of Mathematics at Maharaja's College. We are confident that this program will equip you with the knowledge, skills, and passion to excel in your chosen field and become a lifelong learner.

Dr. Jaya S.

Chairman

Board of Studies (Mathematics)

Maharaja's College, Ernakulam

Board of Studies: Mathematics (UG)

1 Dr. Ious S (Chairmannan)
1. Dr. Jaya S (Chairperson)
Associate Professor and Head of the Department
2. Mrs. Anusha A. K.,
Assistant Professor(Mathematics)
3. Dr. Pravas K.
Assistant Professor(Mathematics)
4. Mrs. Thasneem T. R.
Assistant Professor(Mathematics)
5. Dr. Sreeja K. U.
Assistant Professor(Mathematics)
6. Dr. Balakrishnan R.
Assistant Professor(Mathematics)
7. Mrs. Subha A B
Assistant Professor(Mathematics)
Expert Committee
8. Dr. Vinod Kumar P. B. (Expert from outside the university)
Professor(Mathematics) Paiagiri School of Engineering and Tachnology(Autonomous) Kochi
Contraction of the second state of the second
9. Dr. Aparna Lakshmanan S. (Expert from outside the university)
Professor(Mathematics), CUSAT, Kochi.
10. Dr. V. B. Kiran Kumar(University Nominee)
Assistant Professor(Mathematics), CUSAT, Kochi
11. Mr. Sreekanth Raja(Representative from the field of Industry)
 11. Mr. Sreekanth Raja(Representative from the field of Industry) Scientist E, Naval Physical Oceanographic Laboratory (NPOL), Ministry of Defense
 11. Mr. Sreekanth Raja(Representative from the field of Industry) Scientist E, Naval Physical Oceanographic Laboratory (NPOL), Ministry of Defense 12. Dr. Mary Shalet T. J.(Meritorious Alumnus)
 11. Mr. Sreekanth Raja(Representative from the field of Industry) Scientist E, Naval Physical Oceanographic Laboratory (NPOL), Ministry of Defense 12. Dr. Mary Shalet T. J.(Meritorious Alumnus) Associate Professor (Mathematics) Government College, Chittur

Curricular Structure of the MCE–UG(Honours) Programme

No.	Course Type	No. of Courses	Total Credits
1	Foundation: Ability Enhancement Courses(AEC)	4	12
2	Foundation: Multi-disciplinary Courses(MDC)	3	9
3	Foundation: Skill Enhancement Courses(SEC)	3	9
4	Foundation: Value Addition Courses(VAC)	3	9
5	Discipline Specific Courses: Major (DSCA/DSE)	17	68
6	Discipline Specific Courses: Minor(DSCB&C)	6	24
7	Internship (INT)		2
	Total	36	133

3 Year UG Degree–6Semesters

4 Year UG Degree (Honours)–8 semesters

No.	Course Type	No. of Courses	Total Credits			
1	Foundation: Ability Enhancement Courses(AEC)	4	12			
2	Foundation: Multi–disciplinary Courses(MDC) 3					
3	Foundation: Skill Enhancement Courses (SEC) 3					
4	Foundation: Value Addition Courses (VAC)	3	9			
5	Discipline Specific Courses: Major(DSC A/DSE)	17	68			
6	Discipline Specific Courses: Minor(DSC B&C)	6	24			
7	Discipline Capstone Courses: Major (DCC/DCE)	8	32			
8	Research Project(PRJ)		12/8			
9	Internship(INT)		2			
	Total	44	177			

4 Year UG Degree (Honours with Research)–8 Semesters

Programme Outcomes(POs)

PO1	Critical Thinking and Analytical Reasoning
PO2	Scientific Reasoning and Problem Solving
PO3	Multidisciplinary/Interdisciplinary/Transdisciplinary Approach
PO4	Communication Skills
PO5	Leadership Skills
PO6	Social Consciousness and Responsibility
PO7	Equity, Inclusiveness and Sustainability
PO8	Moral and Ethical Reasoning
PO9	Networking and Collaborating
PO10	Lifelong Learning

Evaluation Scheme

Components	Marks (4 Credit)	Marks (3 Credit)
Continuous Internal Assessment (CIA)	30	25
End Semester Examination	70	50
Total	100	75

Syllabus Index

Semester	Course Code	Title of the Course	itle of the Course DSC,	Credit	Hours/	Hour Distribution/ week					
			MDC, SEC etc.		week	L	Т	Р	0		
1	MCE1DSCMAT100	Ground roots of Mathematics with visualization	DSC A/B	4	5	3	0	2	0		
1	MCE1DSCMAT101	Mathematics foundation for Quantitative analysis	DSC B	4	5	3	0	2	0		
1	MCE1MDCMAT100	Mathematics for Competitive Examinations	MDC	3	4	2	0	2	0		
2	MCE2DSCMAT100	Matrix Mastery and Calculus Adventures	DSC A/B	4	5	3	0	2	0		
2	MCE2DSCMAT101	Advanced Mathematical tool for Quantitative analysis	DSC B 4 5		5	3	0	2	0		
2	MCE2MDCMAT100	Applicable Mathematics	MDC 3 4				0	1	0		
3	MCE3DSCMAT200	Mathematical Insights: Equations, Multiple Integrals and Conics	DSC A 4 5		3	0	1	0			
3	MCE3DSCMAT201	Unlocking Mathematics: Exploring complex number, vectors and equivalence relations	DSC A 4 5		3	0	2	0			
3	MCE3DSCMAT202	Mathematical Tools for Physical Sciences	DSC B/C	4	5	3	0	2	0		
3	MCE3DSCMAT203	Applied Mathematics in Quantitative Analysis	DSC B/C 4 5		5	3	0	2	0		
3	MCE3DSEMAT200	Fundamentals of Investment Science	DSE	DSE 4 4		4	0	0	0		
3	MCE3DSEMAT201	Game Theory and Project Management	DSE 4 4		4	0	0	0			
3	MCE3DSEMAT202	Mathematical Musings beyond Classroom	DSE 4 4		4	0	0	0			
3	MCE3MDCMAT200	Mathematics of Nature and Art	MDC	3	3	3	0	0	0		

3	MCE3VACMAT200	Mastering Problem Solving through Vedic Mathematics	VAC 3		3	3	0	0	0
4	MCE4DSCMAT200	Matrix and Number Theory	DSC A	4	5	3	0	2	0
4	MCE4DSCMAT201	A Journey through the basics of Mathematical Analysis	DSC A	4	5	3	0	2	0
4	MCE4DSCMAT202	Mathematical Tools for Physical Sciences	DSC B/C	4	5	3	0	2	0
4	MCE4DSCMAT203	Applied Mathematics in Quantitative Analysis	DSC B/C	4	5	3	0	2	0
4	MCE4DSEMAT200	The Share Market Basics	DSE	4	4	4	0	0	0
4	MCE4DSEMAT201	Mathematical Modelling	DSE	4	4	4	0	0	0
4	MCE4DSEMAT202	Transforms and Fourier Series	DSE	4	4	4	0	0	0
4	MCE4DSEMAT203	Operations Research	DSE	4	4	4	0	0	0
4	MCE4VACMAT200	Business Mathematics	VAC	3	3	3	0	0	0
4	MCE4SECMAT200	Document Preparation using LaTeX	SEC	3	3	3	0	0	0
4	MCE4INTMAT200	Internship	INT	2					
5	MCE5DSCMAT300	A Voyage into Complex Analysis	DSC A	4	5	3	0	2	0
5	MCE5DSCMAT301	Towards Mathematical Precision: Limits And Convergence	DSC A	4	4	4	0	0	0
5	MCE5DSCMAT302	Fundamentals of Groups and Rings	DSC A	4	5	3	0	2	0
5	MCE5DSCMAT303	Differential Equations and Applications	DSC A	4	4	4	0	0	0
5	MCE5DSEMAT300	Numerical Methods	DSE	4	4	4	0	0	0
5	MCE5DSEMAT301	Exploring the Harmony of Automata	DSE 4 4		4	4	0	0	0
5	MCE5DSEMAT302	Inventory management and	DSE	4	4	4	0	0	0

		simulation : the basics of business success							
5	MCE5SECMAT300	Introduction to Python for Mathematical Computation	SEC 3 3		3	0	0	0	
6	MCE6DSCMAT300	Mathematical Analysis	DSC A	4	5	3	0	2	0
6	MCE6DSCMAT301	Fundamentals of Linear Algebra	DSC A	4	5	3	0	2	0
6	MCE6DSCMAT302	Application of Calculus and Linear Algebra in Finance	DSC A	4	5	3	0	2	0
6	MCE6DSEMAT300	An Invitation to Fuzzy Mathematics	DSE	4	4	4	0	0	0
6	MCE6DSEMAT301	Combinatorics	DSE	4	4	4	0	0	0
6	MCE6DSEMAT302	Computations and Graphics Using Scilab	DSE	4	4	4	0	0	0
6	MCE6VACMAT300	Mathematical Computation and Visualization with R	VAC 3		3	3	0	0	0
6	MCE6SECMAT300	Computations and Graphics using SageMath	SEC	3	3	3	0	0	0
7	MCE7DCCMAT400	Advanced Linear Algebra	DCC	4	5	3	0	2	0
7	MCE7DCCMAT401	Theory of Complex Functions	DCC	4	4	4	0	0	0
7	MCE7DCCMAT402	Introduction to Metric Spaces	DCC	4	4	4	0	0	0
7	MCE7DCEMAT400	Algebraic Structures in Depth : Groups and Rings	DCE	4	4	4	0	0	0
7	MCE7DCEMAT401	Real Analysis	DCE	4	4	4	0	0	0
7	MCE7DCEMAT402	Graph Theory	DCE	4	4	4	0	0	0
7	MCE7DSCMAT400	Principles of Quantitative Analysis	DSC B	4	4	4	0	0	0
7	MCE7DSCMAT401	Dynamic Optimization	DSC B	4	4	4	0	0	0
8	MCE8DCCMAT400	Functional Analysis	DCC	4	5	3	0	1	0

8	MCE8DCCMAT401	Measure Theory and Integration	DCC 4		5	3	0	2	0
8	MCE8DCEMAT400	Basic Topology	DCE 4 5		5	3	0	2	0
8	MCE8DCEMAT401	Exploring Field Extensions and Galois Theory	DCE	4	5	3	0	2	0
8	MCE8DCEMAT402	Optimization Techniques	DCE		5	3	0	2	0
8	MCE8PRJMAT400	Project (Research /Honours)	PRJ	12					

Programme	B.A/ B.Sc./ B.Com(Honours)						
Course Name	Ground Roots of Mathematics with Visualisation						
Type of Course	Discipline Spec	Discipline Specific Course - DSC A/B					
Course Code	MCE1DSCMAT10	MCE1DSCMAT100					
Course Level	100-199						
Course Summary	This course provides a solid foundation in both mathematical logic and the principles of calculus. Beginning with "Basic Logic", students explore propositional logic, propositional equivalence, predicates, and quantifiers. The course then transitions to "Functions", covering the basics of functions and their graphs, combining functions through shifting and scaling, and introducing inverse functions. The core of the course is dedicated to "Derivatives", where students are introduced to techniques of differentiation without formal proof, higher derivatives, product and quotient rules, derivatives of trigonometric functions using formulas, the chain rule, and implicit differentiation. The focus is on practical applications, preparing students for real-world problem-solving. The course concludes with an exploration of the "Applications of Derivatives", emphasizing the analysis of functions. Topics include determining intervals of increase, decrease, and concavity, identifying relative extrema with geometric implications of multiplicity, applying L'Hôpital's Rule, and addressing indeterminate forms.						
Semester	1	Credits			4	Total	
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours	
Details	Арргоасті	3	0	1	0	75	

CO No:	Expected Course Outcome	Learning Domains	PO No:			
Upon the successful completion of the course, the student will be able to						
1	Understand the language of Mathematics and communicate in a proper way.	U	1, 2, 3, 4, 10			
2	Understand the geometry of basic functions and their properties.	U	1, 2, 3, 10			
3	Analyse the conditions for a function to have an inverse.	An	1, 2, 3			
4	Understand and apply the process of differentiation.	А	1, 2, 3, 10			
5	Characterize increasing/decreasing functions using their derivatives.	U	1, 2, 3, 10			
6	Apply L'Hôpital's rule to evaluate indeterminate forms.	А	1, 2			
7	Experience graphing tools in doing and enjoying Mathematics	S	1, 2, 3, 4, 9,10			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE OUTCOMES (CO)

COURSE CONTENT

Module	Units	Course Description	Hours	CO No:
1		Basic Logic		
	1.1	Propositional Logic	15	1
1.2		Propositional Equivalence		1
	1.3	Predicates and Quantifiers		1
	Text 2:	Chapter 1- Sections: 1.1, 1.3, 1.4		
2		Functions		

	2.1	Set, Set operations, Set identities (Review)		1	
	2.2	Functions and their graphs (excluding representing functions numerically)	20	2	
	2.3	Combining Functions: Shifting and scaling Graphs		2,7	
	2.4	Inverse Functions		3	
	Problem for sect	ms (Practicum) Include Desmos / Geogebra classroom act ions 2.2,2.3,24	ivities	1, 2, 3, 7	
	Text 3: functio	Chapter 1 - Sections: 1.1, 1.2, Chapter 7 - Section: 7.1 (In ns only)	verse		
3		Derivatives			
	3.1 Introduction to Techniques of Differentiation (without proof)				
	3.2	Higher derivatives, The product and quotient rules			
	3.3	Derivatives of trigonometric functions (Using formulas only) 20			
3.4 Chain Rule				4	
	3.5	Implicit Differentiation		4	
		Problems (Practicum) Desmos Classroom activities for section 3.2			
	Text 1:	Chapter 2 - Sections: 2.3 to 2.7	1		
4		Applications of derivatives			
4.1 Analysis of Functions I: Increase, decrease and concavi 4.2 Analysis of Functions II: Relative extrema 4.3 L'Hôpital's Rule		Analysis of Functions I: Increase, decrease and concavity		5,7	
		Analysis of Functions II: Relative extrema	20	5,7	
		L'Hôpital's Rule		6	
	4.4	Indeterminate forms		6	
		Problems (Practicum) Desmos Classroom activities for section 4.1 and 4.2		5, 6, 7	

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.

It's purpose is to encourage creativity and develop Problem Solving Skills.

The practicum component is to be done in the classroom under the strict

guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the

solutions should be kept in the department.

Teaching		Classroom Pr	ocedure (l	Node of tra	nsaction)			
and Learning Approach	Leo Ass	Lecture, Teaching, Interactive Instruction using ICT Tools, Seminar, Group Assignment, Library Work and Group Discussion.						
		MO	DE OF ASS	ESSMENT				
	Α	Continuous Comp	rehensive	Assessmei	nt (CCA) 3	0 Marks		
		Compo	nents		Mark Di	stribution		
		Module	Test -1		5 Marks			
		Module	Test -2		5 Marks			
		Module Test -3 Module Test -4 Assignment/ Seminar				5 Marks		
						5 Marks		
Assessment Types						nar 5 Marks		
-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Quiz/Viva			5 Marks			
		Total			30 Marks			
	B	End Semester Evaluation (ESE) 70 marks						
		Question Pattern						
		[Maximum T	Time 2 Hour	s, Maximun	n Marks 70]		
			Part A	Part B	Part C			
		Module	2 Marks	6Marks	10 Marks	Total		
		I	2	2	1	5		

	II	2	2	2	6
	III	2	2	1	5
	IV	2	2	2	6
	Total no of questions	8	8	6	22
	Number of questions to be answered	5	5	3	13
	Total Marks	10	30	30	70

TEXT BOOKS:

- Anton, Howard, Irl Bivens, Stephen Davis. *Calculus*. 10th ed. John Wiley & Sons, Inc., 2012.
- Rosen, Kenneth H. Discrete Mathematics and Its Applications (7th ed.). McGraw Hill Publishing Co. New Delhi, 2013.
- 3. Thomas, George B., Jr., and Maurice D. Weir. *Thomas' Calculus*. 12th ed. Pearson, 2009.

SUGGESTED READINGS:

- Hofstadter, Douglas R. *Gödel, Escher, Bach: An Eternal Golden Braid*. Expanded ed. Basic Books, 2007.
- 2. Copi, Irving M., Carl Cohen. Introduction to Logic. 5th ed. Routledge, 2018.
- 3. Stewart, James. Calculus: Early Transcendentals. 10th ed. Cengage Learning, 2023.
- 4. Thompson, Silvanus P. Calculus Made Easy. 5th ed. Dover Publications, 2014.
- Thomas, George B., Jr., and Maurice D. Weir. *Thomas' Calculus*. 15th ed. Pearson, 2023.
- 6. Featured collections in https://teacher.desmos.com/

ADVANCED READINGS:

- 1. Hurley, Patrick J. *A Concise Introduction to Logic*. 11th ed. Wadsworth Publishing, 2018.
- 2. Copi, Irving M., Carl Cohen. *Symbolic Logic*. 13th ed. W.W. Norton & Company, 2019.
- 3. Davis, Philip J. Advanced Calculus. 7th ed. Wiley-Interscience, 2002.
- 4. Tu, Loring W. Introduction to Manifolds. 3rd ed. Springer, 2012

Programme	B.A./ B.Sc. / B.Com. Ho	B.A./ B.Sc. / B.Com. Honours					
Course Name	Mathematics Foundation	for Quanti	tative Anal	ysis			
Type of Course	Discipline Specific Co	Discipline Specific Course (DSC B)					
Course Code	MCE1DSCMAT101						
Course Level	100-199						
Course Summary	This is a course designed to equip students with the essential mathematical tools for advanced quantitative studies. It covers fundamental concepts such as sets, relations, functions, and their applications in economic models like market equilibrium and national income analysis. The course delves into differential calculus, including derivatives, limits, continuity, and partial differentiation. Matrix algebra, encompassing operations, properties, and inverses, is also introduced. This foundation is crucial for understanding quantitative techniques used in various fields, providing a						
Semester	1	Credits			4	Total Hours	
Course	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others		
Details	5	3	0	1	0	75	
Pre- requisites, if any	Basic Mathematics K	nowledge	2				

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon	the completion of the course, student will be able to:		
1	Get an insight into the concept of the set and functions	U	1, 2, 10
2	Understand the concept of Limit and continuity	U	1, 2, 3, 6
3	Perform ordinary and partial differentiation	Α	1,2,10

4	Perform of basic operations Matrices	U,A	2, 3, 6, 16		
*Demonstrand (K) Hardenstrand (H) Angla (A) Angland (A) Englands (E) Casets (C) Still					

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Units Course description		CO No.
	1.1	The real number system, The concepts of sets,		1
	1.2	Relation and Functions		1
	1.3	Types Functions, functions of two or more independent variables	15	1
1	Practical market equilibrium, A nonlinear model, General market equilibrium (Exclude n commodity case)			1
	1.5	Equilibrium in National income analysis		1
		Chapter 2 section 2.2 -2.6, Chapter 3 Section 3	3.3-3.5	
2	2.1	Rate of change and the derivative	-	2
	2.2	Derivative and the slope of a curve		2
	2.3	Concept of limit, Limit Theorem	20	2
	2.4	Continuity and differentiability of a function		2
	2.5	Practicum: Problems		2
		Section 6.2 - 6.4, 6.6-6.7		
	3.1	Rules of differentiation for a function of one variable		3
3	3.2	Rules of differentiation involving two or more functions in the same variable	20	3
	3.3	Rules of differentiation involving functions of different variables		3
	3.4	Partial differentiation		3
	3.5	Practicum: Problems		3
		Section 7.1-7.4	•	
	4.1	Matrices and vectors		4
4	4.2	Matrix operations, Notes on vector operations	20	4
	4.3	Commutative associative and distributive		4

	laws	
4.4	Identity matrices and null matrices, Transpose and inverse	4
4.5	Practicum: Problems	4
	4.1-4.6	

5	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, field visit etc. as</i>
	specified by the teacher concerned) This content will be evaluated internally
	This content will be evaluated internany
	Practicum
	P racticum is designed to provide supervised practical application of theoretical knowledge and skills. It's purpose is to encourage creativity and develop Problem solving skills. The practicum component is to be done in the classroom under the strict guidance of the teachers. A minimum of 30 problems is to be solved, and a hand written copy of the solutions should be kept in the department.

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment,
Approach	Library Work and Group Discussion

Teaching		Classroom Procedure (Mode of transaction)							
Learning									
Approach									
		MOI	DE OF ASS	SESSMENT					
	Α	Continuous Compr	ehensive	Assessme	nt (CCA) 3	0 Marks			
		Compo	nents		Mark Distributi				
		Module Test -1		5 Marks					
		Module Test -2			5 Marks				
Assessment		Module Test -3		5 Marks					
Types		Module Test -4 Assignment/ Seminar			5 Marks				
					5 Marks				
		Quiz/Viva		5 Marks					
		Tot	al	30 Marks		Marks			
	B	End Semes	ster Evalua	ation (ESE)	70 marks				
			Question	Pattern					
		[Maximum T	ime 2 Houi	rs, Maximur	n Marks 7()]			
		Module	Part A	Part B	Part C	Total			

	2 Marks	6 Marks	10 Marks	
Ι	2	2	1	5
II	2	2	2	6
III	2	2	1	5
IV	2	2	2	6
Total no of questions	8	8	6	22
Number of questions to be answered	5	5	3	13
Total Marks	10	30	30	70

Text Book:

1. Chiang, C., Fundamental Methods of Mathematical Economics McGraw Hills, (*Latest Edition*).

SUGGESTED READINGS:

- 1. Simon, Carl P., and Lawrence Blume. *Mathematics for economists*. Vol. 7. New York: Norton, 1994.
- 2. Knut Sydsaeter, Peter Hammond, Arne Strom, Essential Mathematics for Economic Analysis (4th Edition), Pearson Publication, 2012.
- 3. Budnick, Frank, Applied Mathematics for Business, Economics and Social Sciences, McGraw Hills Education, 2017..
- 4. Dowling E. T., Mathematics for economists, Schum Series (latest edition)
- 5. Rosser, Mike, Basic Mathematics for Economists, Routledge, Taylor & Francis Group, 2003.

Programme	B.A./ B. Com / B.Sc. Mathematics Honours							
Course Name	Mathematics for Competitive Examinations							
Type of Course	Multi–disciplinary Course - MDC							
Course Code	MCE1MDCMAT100	MCE1MDCMAT100						
Course Level	100-199							
Course Summary	This competitive exam-focused mathematics course covers crucial topics like number systems, logical reasoning, data analysis, and mathematical measurements. This course explores concepts such as HCF, LCM, fractions, ratios, percentages, and time-related problem- solving, providing comprehensive preparation for various competitive examinations.							
Semester	1		Credits		3	Total		
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours		
		2	0	1	0	60		
Pre-requisites, if any	Nil							

CONo:	Expected Course Outcome	Learning Domains	PO No:					
Upon tl	Upon the successful completion of the course, the student will be able to							
1	Develop a solid understanding of various types of numbers. Master techniques for calculating HCF and LCM and gain proficiency in simplifications, squares and square roots.	K, U, E	1, 2, 10					
2	Acquire logical reasoning skills by exploring concepts such as ratio, proportion, percentage, and solving problems related to profit, loss and age and apply these principles to real world scenarios.	K, U, E	1,2,3,4,10					
3	Gain expertise in mathematical measurements through topics like time and work, time and distance, and stocks and shares. Apply mathematical concepts to solve practical problems in these areas.	K, A, E	1,2,3,10					

COURSE OUTCOMES (CO)

*Remember(K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)

COURSE CONTENT

Units	ts Course Description		CO. NO:			
1	Number System and Numerical Technique					
1.1	Type of Numbers		1			
1.2	HCF and LCM of Numbers	18	1			
1.3	Decimal Fractions, Simplification		1			
1.4	Square Roots and Cube Roots		1			
Problems (Practicum)						
Text 1: Relevant portions						

2	Logical Reasoning & Data Analysis				
2.1	Ratio and Proportion		2		
2.2	Percentage		2		
2.3	Profit and Loss	24	2		
2.4	Problems on Age				
2.5	Simple Interest & Compound Interest		2		
2.6	Calendar		2		
	Problems (Practicum)				
Text 1: Releva	nt Portions				
3	Mathematical Measurements				
3.1	Time and Work	10	3		
3.2	Time and Distance	18	3		
3.3	Stocks and Shares		3		
	Problems (Practicum)				
Text 1: Relev	ant Portions				
4	Teacher Specific Contents (This can be either classroom teaching, practic specified by the teacher concerned) This conte internally	al session, fiel nt will be eval	d visit etc. as uated		
Teaching and Learning Approach	Classroom Procedure(Mode of tra Tutorial	nsaction): Lec	eture,		

		MODE OF ASSESSMENT				
	Α	Continuous Compre	ehensive Assessment (CCA) 25			
Assessment		Marks				
		Components	Mark Distribution			
Types		Module Test -1	5 Marks			
		Module Test -2	5 Marks			

	Module Test -3	5 Marks			
	Assignment/ Seminar	5 Marks			
	Quiz/Viva voce	5 Marks			
	Total	25 Marks			
В	End Semester Evaluation(E	SE) 50 Marks			
	Question Pattern	(MCQ Examination)			
	Maximum Time 75 Mi	nutes, Maximum Marks 50			
	Module	Number of Questions			
	Ι	8			
	II	14			
	III	8			
	Answer any 25 questions out of 30 Multiple Choice				
	Questions.				
	Each question carries 2 marks.				

TEXT BOOK:

1. Aggarwal, R.S. Quantitative Aptitude, Sultan Chand and company Ltd, New Delhi, 2017.

SUGGESTED READINGS:

1. Abhijit Guha, Quantitative Aptitude for Competitive Examinations, McGraw Hill Education 2011.

2. Tyra M., Magical Book on Quicker Maths., BSC Publishing Company, 2018.

Programme	B.Sc. Mathematics Honours						
Course Name	Matrix Mastery and	Matrix Mastery and Calculus Adventures					
Type of							
Course	Discipline Specific	Course (D	SC A)				
Course Code	MCE2DSCMAT10	0					
Course Level	100-199						
Course Summary	This course provid core of the course to techniques of product and quo formulas, the chai applications, prep concludes with emphasizing the a increase, decrease implications of indeterminate form	This course provides a solid foundation in matrix theory and applications. The core of the course is dedicated to "Derivatives", where students are introduced to techniques of differentiation without formal proof, higher derivatives, product and quotient rules, derivatives of trigonometric functions using formulas, the chain rule, and implicit differentiation. The focus is on practical applications, preparing students for real-world problem-solving. The course concludes with an exploration of the "Applications of Derivatives", emphasizing the analysis of functions. Topics include determining intervals of increase, decrease, and concavity, identifying relative extrema with geometric implications of multiplicity, applying L'Hôpital's Rule, and addressing					
Semester	2	Credits 4					
Course	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others		
Details	5 11 100	3	0	1	0	75	
Pre- requisites, if any	Differentiation, Inte	egration an	d Matrices				

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon	the completion of the course, student will be able to:		
1	Understand the concept of partial derivatives and experience its applications	U	1, 2, 3, 4, 10
2	Compute definite integrals of single-variable functions, double integrals and understanding their geometric	А	1, 2, 3, 10

	interpretation.					
3	Apply matrices to solve systems of linear equations using methods of Gaussian elimination and matrix inversion.	А	1, 2, 3, 10			
*Remember (K), Understand (U), Apply (A), Analyse (An),						
Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Module	Units	Course description		CO No.
		Partial Differentiation		
	1.1	Partial derivatives		1
1	1.2	The Chain rule	20	1
	1.3 Extreme values and saddle points		20	1
		Problems (Practicum)		1
		Text 3: Chapter 14 - Sections: 14.3, 14.4, 14.7		
		Integral Calculus: Definite integrals and double integrals		
	2.1	Integrals and Integration methods (Review)	20	2
	2.2	The Definite Integral	20	2
	2.3	The Fundamental Theorem of Calculus (Proof of theorems excluded)		2
2	2.4	Double Integrals over rectangular regions		2
		Problems (Practicum)		
		Text 1: Chapter 7 - Section: 7.1; Chapter 4 - Sections: 4 (discontinuities and integrability excluded), 4.6(dummy variables, The mean valuetheorem for integrals and integrating rates of changes excluded); Chapter 14 sect 14.1	l.5 ion	
		Matrices		
3	3.1	Linear System, Coefficient Matrix, Augmented Matrix	20	3
	3.2	Gauss Elimination and Back Substitution		3

	3.3	Elementary Row Operations, Row-Equivalent Systems		3
	3.4	Gauss Elimination: The three Cases of systems		3
	3.5	Row Echelon Form and Information from it.		3
		Problems (Practicum)		3
		Text 2: Chapter 7 -Section:7.3	<u> </u>	
		Matrices (continued)		
4	4.1	Linear combination and independence/dependence of rows and columns of matrices		3
	4.2	Row equivalent matrices		3
	4.3	Row rank, column rank and rank of a matrix		3
	4.4	Normal form and equivalent matrices	15	3
	4.5	Consistency of system of linear equations		3
	4.6	Invertible Matrices	-	3
		Problems (Practicum)		
		Text 4: Relevant portions of Chapter 3 and Chapter 4 [Theorems (Statement only) and their applications]		
5		Teacher Specific Content		
	This can as speci This con	n be either classroom teaching, practical session, field visit fied by the teacher concerned) tent will be evaluated internally	etc.	

Teaching and Learning Approach]	Classroom Procedure Lecture, Tutorial, Activity oriented			
] A	MODE OF ASSESSMENT A Continuous Comprehensive Assessment (CCA)			
Assessment Types		Components	Mark Distribution		
		Module Test -1	5 Marks		
		Module Test -2	5 Marks		

					1	
		Module Test -3	5 Marks			
		Module Test -4	5 Marks	5 Marks		
		Assignment			5 Marks	
		Quiz/Viva			5 Marks	
		Total			30 Marks	
	В	End Se	emester H	Examination	(Written)	
		Question Pattern[M 70]	ours, Maximum Marks			
		Modulo	Part A	Part B	Part C	Total
		Mouule	2 Marks	6 Marks	10 Marks	Total
		I	2	2	1	5
		II	2	2	2	6
		III	2	2	1	5
		IV	2	2	2	6
		Total no of questions	8	8	6	22
		Number of questions to be answered	5	5	3	13
		Total Marks	10	30	30	70

TEXT BOOKS:

- 1. Anton, Howard, Irl Bivens, Stephen Davis. Calculus. 10th ed. John Wiley &Sons, Inc., 2012.
- 2. Kreyszig, Erwin. *Advanced Engineering Mathematics*. 9th ed. Wiley International, 2011.
- 3. Thomas, George B., Jr., and Maurice D. Weir. *Thomas' Calculus*. 12th ed. Pearson, 2009.
- 4. Blyth, T. S., and E. F. Robertson. Basic linear algebra. Springer, 2007.

SUGGESTED READINGS:

- 1. Spivak, Michael. Calculus and Applications. 11th ed. Pearson, 2023
- 2. Stewart, James. Calculus: Early Transcendentals. 10th ed. Cengage Learning, 2023.

- 3. Thompson, Silvanus P. Calculus Made Easy. 5th ed. Dover Publications, 2014.
- 4. Thomas, George B., Jr., and Maurice D. Weir. *Thomas' Calculus*. 15th ed. Pearson, 2023.
- 5. Evans, Lawrence C. *Partial Differential Equations: An Introduction*. 2nd ed. American Mathematical Society, 2010.

ADVANCED READINGS:

- 1. Axler, Sheldon. Linear Algebra Done Right. 3rd ed. Springer, 2015.
- 2. Evans, Lawrence C. *Partial Differential Equations: An Introduction*. 2nd ed. American Mathematical Society, 2010.
- 3. Diestel, Reinhard. Graph Theory. 5th ed. Springer, 2017.
- Fichtenholz, Grisha M. Integration of Functions of Several variables. 2nd ed. American Mathematical Society, 2010.
- 5. Strang, Gilbert. *Introduction to Linear Algebra*. 5th ed. Wellesley-Cambridge Press, 2016.

Programme	B.A. / B.Sc. / B.Com. (H	B.A. / B.Sc. / B.Com. (Honours)							
Course Name	Advanced Mathematica	l Tool for	Quantitat	ive Analysis					
Type of Course	Discipline Specific Cour	Discipline Specific Course (DSC B)							
Course Code	MCE2DSCMAT101								
Course Level	100-199	100-199							
Course Summary	This course delves into includes Cramer's Rule linear equations. It inclu finding maximum/minim and logarithmic functio student will have a so relevance in various fiel	This course delves into various mathematical concepts and their applications. It includes Cramer's Rule and determinants, which are used to solve systems of linear equations. It includes the concept of differentiation and its applications in finding maximum/minimum values of functions. The course also covers exponential and logarithmic functions and their properties. By the end of this course, the student will have a solid understanding of these mathematical tools and their relevance in various fields.							
Semester	2	Credits 4 Total							
Course	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours			
Details		3	0	1	0	75			
Pre- requisites, if any	Mathematical Foundation f	or Quantitat	tive Analysis	5					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon i	he completion of the course, student will be able to:		
1	Solve system of equations using matrices	A	1,2,6,10
2	Find out derivative and total derivative	А	1,2,3
3	Solve optimization problems	An	1,2,6
4	Apply various properties of exponential and	An	1,2,6,10

logarithmic function		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), (Create (C),
Skill (S), Interest (I) and Appreciation (Ap)		

COURSE CONTENT

Module	Units	Course description		CO No.
	1.1	Condition for non-singularity of matrix	20	1
	1.2	Test of non-singularity by use of determinants, rank of Matrix		1
1	1.3	Finding inverse of matrix,		1
	1.4	Cramer's rule		1
	1.5	Application to market and national income model		1
	Practicum: problems Section 5.1-5.4			1
		Section 5.1-5.4		
	2.1	Differential, Total differential	20	2
	2.2	Rules of differentials		2
2	2.3	Total derivatives		2
	2.4	Derivative of implicit functions		2
	2.5	Practicum: Problems		2
		Section 8.1-8.5		
	3.1	Optimum values and extreme values	20	3
3	3.2	Relative maximum and relative minimum, first derivative test		3

	3.3Second and higher derivatives3.4Second derivative test			3
				3
	3.5	Practicum: Problems		3
		Section 9.1-9.4(up to example	e 2)	
	4.1	The nature of exponential function	15	4
4	4.2	Natural exponential functions and the problem of growth, Logarithms, logarithmic function		4
	4.3 Derivatives of exponential and logarithmic function			4
	Further application of logarithmic4.4and exponential functions			4
		Chapter10 (exclude section 1	0.6)	

5	Teacher Specific Contents(This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned)This content will be evaluated internally
	Practicum
	Practicum is designed to provide supervised practical application
	of theoretical knowledge and skills. It's purpose is to encourage creativity and develop Problem solving skills. The practicum component is to be done in the classroom under the strict guidance of the teachers. A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

	Classroom Procedure (Mode of transaction)
Teaching and Learning Approach	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion

Assessme nt Types	MODE OF ASSESSMENT				
	А	Continuous Comprehensive	Assessment (CCA)		
		Components	Mark		
			Distribution		

	Module Test -	1		5 Marks		
	Module Test -2	2		5 Marks		
	Module Test -	3		5 Marks		
	Module Test -	4	5 Marks			
	Assignment			5 Marks		
	Quiz/Viva			5 Marks		
	Total			30 Marks		
В		End	Semester E	xaminatio	n (Written)	
	Qu	estion Patt Ma	tern[Maxim aximum Ma	ximum Time 2 Hours, Marks 70]		
	Module	Part A	Part B	Part C	Tot al	
		2 Marks	6 Mark s	10 Marks		
	Ι	2	2	1	5	
	II	2	2	2	6	
	III	2	2	1	5	
	IV	2	2	2	6	
	Total no of question s	8	8	6	22	
	Number of questions to be answered	5	5	3	13	
	Total Marks	1 0	30	3 0	70	

Text Book:

Chiang, C., Fundamental Methods of Mathematical Economics, McGraw Hills, (*Latest Edition*).

SUGGESTED READINGS:

- 1. Simon, Carl P., and Lawrence Blume. *Mathematics for economists*. Vol. 7. New York: Norton, 1994.
- 2. Knut Sydsaeter, Peter Hammond, Arne Strom, Essential Mathematics for Economic Analysis (4th Edition), Pearson Publication, 2012.
- *3.* Budnick, Frank, Applied Mathematics for Business, Economics and Social Sciences, McGraw Hills Education, 2017.
- 4. Dowling E. T., Mathematics for economists, Schum Series (latest edition).
- 5. Rosser, Mike, Basic Mathematics for Economists, Routledge, Taylor & Francis Group, 2003.

Programme	B.Sc. Mathematics Honours					
Course Name	Applicable Mathematics					
Type of Course	Multi-disciplinary Course	- MDC				
Course Code	MCE2MDCMAT100					
Course Level	100-199					
Course Summary	Through this course, students are able to investigate the fundamental principles of quantitative techniques, delving into matrices, their algebraic operations, and specialized types. Navigate the world of polynomials, focusing on quadratic and cubic equations and learning their solutions and factorization. Discover the power of permutations and combinations through factorial notation, with practical applications. Finally, grasp the dynamics of variable rates of change by knowing basic functions and differentiation principles. This course provides students with the necessary mathematical tools for real-world problem-solving and analytical					
Semester	2	Credits			3	Total
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours
		2	0	1	0	60
Pre-requisites, if any	nil					

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		
1	Understand and apply matrix algebra	U, A	1, 2, 3,10

2	Apply quadratic and cubic polynomial techniques, factorization, and solution of quadratic equations to solve problems.	K, U, A	1,2,4,10
3	Utilize factorial notation, permutations, combinations, and their applications to solve combinatorial problems.	U,A	1,2,7,10
4	Apply differentiation principles, standard rules, and elementary functions to interpret and solve problems involving variable rates encountered in Competitive exams.	K,U,A	2,10

*Remember (K), Understand(U),Apply(A),Analyse(An),Evaluate(E),Create(C),Skill(S), Interest(I)and Appreciation(Ap)

COURSE CONTENT

Units	Course Description	Hours	CO. NO:
1	Matrices & Polynomials	24	
1.1	Matrices, Different types of matrices associated with a matrix		1
1.2	Some special types of matrices		1
1.3	Algebra of matrices		1
1.4	Quadratic and cubic polynomials		2
1.5	Solution of quadratic polynomials		2
1.6	Factorisation of quadratic polynomials		2
	Problems (Practicum)		1,2
Text 1: Cha 10 (Elemen	npter 1– Sections: 1.4 to 1.6; Chapter 2 - Sections: 2.3 to 2.77 tary Algebra)	Text 2: Rele	evant Portions of chapter

2	Permutation and Combination		
2.1	Factorial notation	18	3
2.2	Permutations & its applications		3
2.3	Combinations & its applications.		3
---	---	--------------------------	----------------------
	Problems (Practicum)		3
Text 2: Chaj	pter 14 (Permutation & Combination)		
	Differentiation		
3.1	Introduction to techniques of differentiation		4
3.2	The product and quotient rules	18	4
3.3	Derivatives of trigonometric functions(using formulas only)	10	4
3.4	The chain rule		4
	Problems (Practicum)		4
Text	3: Chapter 2 - Sections 2.3 to 2.6 (without proof of rules/the	orems)	
Teaching and Learning Approach	Classroom Procedure(Mode of transaction)I Brainstorming Lecture, Explicit Teaching, A Learning,	Direct Instructive Co- o	uction, operative

		MODE OF ASSESSMENT				
	Α	Continuous Comprehensive Assessment (CCA) 25 Marks				
	-	Components	Mark Distribution			
		Module Test -1	5 Marks			
		Module Test -2	5 Marks			
		Module Test -3	5 Marks			
		Assignment/ Seminar	5 Marks			
Assessment		Quiz/Viva voce	5 Marks			
Types		Total	25 Marks			
	В	End Semester Evaluation(ESE) 50 Marks				
		Question Pattern (MCQ Examination)				
		Maximum Time 75 Minutes, Maximum Marks 50				
		Module	Number of Questions			

Ι	8
II	14
III	8
Answer any 25 ques	stions out of 30 Multiple Choice
	Questions.
Each que	stion carries 2 marks.

TEXT BOOKS:

1. Shanti Narayan, Mittal P. K., Text book of Matrices, S. Chand.

2. M. Tyra, Magical Book on Quicker Maths., BSC Publishing Company, 2018.

3. Howard Anton, Irl Bivens, Stephens Davis. Calculus, 10th ed. John Wiley &

Sons, Inc., 2012.

SUGGESTED READINGS:

1. Aggarwal, R.S. Quantitative Aptitude, Sultan Chand and company Ltd, New

Delhi, 2017.

- 2. Thomas, George B., Jr., and Maurice D. Weir, Thomas' Calculus, 12th ed. Pearson, 2009.
- 3. Edward, Joseph. Differential Calculus for beginners, Nabu Press, 2011.

P	
1.00	गगा मतम द

MAHARAJA'S COLLEGE, ERNAKULAM(Govt. Autonomous)

-Offan-							
Programme	B.Sc. Mathematics Honours						
Course Name	Mathematical Insights: Equations, Multiple Integrals and Conics						
Type of Course	Discipline Specific Course (DSC A)						
Course code	MCE3DSC	MAT200					
Course Level	200-299						
Course Summary	This course provides a comprehensive exploration of three key areas in advanced mathematics: Analytic Geometry, Theory of Equations, and Multivariable Calculus. Students will delve into the parametrization of plane curves, polar coordinates, conic sections, and conics in polar coordinates. The Theory of Equations section covers roots of equations, relationships between roots and coefficients, transformations of equations, characteristics, and positions of roots, as well as essential theorems and Descartes' rule of signs. The course progresses into the realm of multivariable calculus, introducing double integrals. Students will learn to evaluate double integrals over general regions, compute areas using double integration, and apply double integrals in polar forms. The focus then shifts to triple integrals, exploring rectangular, cylindrical, and spherical coordinates. Substitutions in both double and triple integrals are covered, enhancing students' problem-solving capabilities. This course aims to equip students with advanced mathematical tools and problem-solving skills, preparing them for further studies						
Semester	3		Credits		4	4	
Course Details	Learning Lecture Tutorial Practicum Others Approach 2 0 1 0					Total Hours	

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		

COURSE OUTCOMES (CO)

1	Demonstrate proficiency in parameterizing plane curves and working with polar coordinates. Analyze conic sections and conics in polar coordinates.	A, An	1,2,3,6,9,10
2	Understand the relationship between roots and coefficients in equations. Apply transformations to equations and analyse special cases.	U, A	1,2,3,10
3	Utilize double integrals for area computations and problem- solving in polar forms.	А	1,2,3,6,10
4	Master triple integrals in rectangular, cylindrical, and spherical coordinates.	А	1,2,3,6, 10

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course Description	CO. No:	Hours
		Analytic Geometry		20
	1.1	Parametrization of Plane curves	1	
	1.2	Polar Coordinates	1	
1	1.3	Conic sections	1	
	1.4	Conics in polar coordinates	1	
	1.5	Problems (Practicum)	1	
	Text 2 11.6 8	2: Chapter 11 - Sections: 11.1 (Brachistochrone and Tautochr & 11.7	one exclu	ided), 11.3,
2		Theory of Equations		
	2.1	Roots of Equation and Relation connecting the roots and coefficients of equation	2	
	2.2	Transformation of Equations and special cases	2	
	2.3	Character and Position of the roots of an equation	2	15
	2.4	Some general theorems (without proof) and Descartes' rule of signs (without proof)	2	
		Problems (Practicum)	2	

	Text	Text 1: Chapter 6 – Sections: 6.1 to 6.4, 6.7 to 6.10								
3		Double integrals								
	3.1	Double integrals over general regions	3							
	3.2 Area by double integration		3	20						
	3.3	Double integrals in Polar Forms	3							
	Text	2: Chapter 15 - Sections: 15.2 to 15.4								
4		Triple Integrals								
	4.1	Triple Integrals in Rectangular Coordinates	4							
	4.2	Triple Integrals in Cylindrical and Spherical Coordinates	4	20						
	4.3	Substitutions in Double Integrals	3							
	4.4	Substitutions in Triple Integrals	3							
	4.5	Problems (Double and Triple integrals) (Practicum)	3,4							
		Text 2: Chapter 15 - Sections: 15.5, 15.7 & 15.8								

Teaching and Learning	Classroom Procedure (Mode of transaction)					
Approach		Lecture, Tutorial and Activity orient	ed			
	MODE OF ASSESSMENT					
	A	A Continuous Comprehensive Assessment (CCA) 30 Marks				
		Components	Mark Distribution			
		Module Test -1	5 Marks			
		Module Test -2	5 Marks			
Assessment Types		Module Test -3	5 Marks			
		Module Test -4	5 Marks			
		Assignment/ Seminar	5 Marks			
		Quiz/Viva	5 Marks			
		Total	30 Marks			
	B End Semester Evaluation (ESE) 70 marks					
		Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]				
		Module Part A Part B	Part C Total			

	2 Marks	6Marks	10 Marks	
Ι	2	2	1	5
II	2	2	2	6
III	2	2	1	5
IV	2	2	2	6
Total no of questions	8	8	6	22
Number of questions to be answered	5	5	3	13
Total Marks	10	30	30	70

TEXT BOOKS:

- 1. Bernard, S., J. M. Child. Higher Algebra. AITBS Publishers, India
- 2. Thomas, George B., Jr., Maurice D. Weir. *Thomas' Calculus*, 12th ed. Pearson, 2009.

SUGGESTED READINGS:

- 1. Berling, William P. Journey through Genius: The Great Theorems of Algebra and Their Proofs. Revised ed. Springer, 2016.
- 2. Spivak, Michael. Calculus and Applications. 11th ed. Pearson, 2023.
- 3. Stewart, James. Calculus: Early Transcendentals. 10th ed. Cengage Learning, 2023.
- 4. Stewart, James. *Multivariable Calculus*. 9th ed. Cengage Learning, 2023.
- 5. Thompson, Silvanus P. Calculus Made Easy. 5th ed. Dover Publications, 2014.
- Thomas, George B., Jr., and Maurice D. Weir. *Thomas' Calculus*. 15th ed. Pearson, 2023.

ADVANCED READINGS:

- 1. Artin, Michael. Algebra: Structures and Applications. 5th ed. Springer, 2011.
- 2. Byron, Frederick W., and Robert W. Fuller. *Advanced Analytic Geometry*. 2nded Dover Publications, 1970.
- 3. Evans, Lawrence C. *Algebraic Number Theory*. 2nd ed. Cambridge University Press, 2019.
- 4. Davis, Philip J. Advanced Calculus. 7th ed. Wiley-Interscience, 2002

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mathematics Honours					
Course Name	Unlocking Mat Equivalence rel	hematics: 1 ations	Exploring (Complex Numbe	er, Vector	s and
Type of Course	Discipline Spec	ific Course	e (DSC A)			
Course Code	MCE3DSCMA	Т201				
Course Level	200-299					
Course Summary	This course serv focusing an in- ordering, comple differentiation, a relations, will ga into the derivativ The course begin representation. If including the con The second segr complex number The latter part of will study vector tangent vectors, of The course cond integrals, vector flux. Fundament potential functio theorem in the p	burse serves as an essential bridge to advanced mathematical concepts, and in-depth exploration of relations, equivalence relations, partial ag, complex numbers, exploring their fundamental characteristics, vector initiation, and vector integration. Students will explore the properties of ns, will gain proficiency in understanding complex numbers, and delve e derivatives and integrals of vector functions. urse begins with "Relations," examining their properties and methods of entation. Equivalence relations and partially ordered sets are explored, ing the construction and interpretation of Hasse Diagrams and Lattices. cond segment delves into basic properties of complex plane. It explores ex number's exponential representations and their geometric importance. ter part of the course transitions into "Vector Calculus, " where students udy vector functions, derivatives of vector functions, arc length, unit t vectors, curvature, normal vectors of a curve, and directional derivatives. purse concludes with an exploration of vector integration, covering line ls, vector fields, and their applications, including work, circulation, and undamental theorems such as path independence, conservative fields, and al functions are introduced, with the exclusion of detailed proofs. Green's n in the plane and the divergence theorem are presented, emphasizing				
Semester	3		Credits	5	4	Total Hours per week
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	
		3	0	1	0	75
Pre- requisites, if any	Vector Algebra					

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:
Upon the	successful completion of the course, the studen	t will be able to	
	Understand the concepts of equivalence	U	1,2,9
1	relations and partially ordered sets.		
	Understand the basic properties of complex	U	1,2,3,1
2	plane, its geometrical dimensions. Identify		0
	regions of complex plane and behavior of		
	complex variables.		
3	Explore vector functions, derivatives, arc	А	1,2,3,10
	length, and curvature of curves and their		
	applications.		
<u></u>	Master line integrals, vector fields, and their	An	1,2,3,9
4	applications.		
5	Strengthen critical thinking skills through practical applications of mathematical concepts	S	1,2,3,9,10

*Remember (K), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill(S), Interest(I) and Appreciation(Ap)

COURSE CONTENT

Units	Course Description	Hours	CO. NO:
1	Equivalence relations and Partial ordering	18	
1.1	Equivalence Relations	8	1
1.2	Partially Ordered Set	4	1
1.3	Hasse Diagrams	3	1
1.4	Lattices	3	1

Text1–Sections:9.5,9.6					
2		18			
2.1	Basic Properties of Complex Numbers	5	2		
2.2	Exponential form of Complex Numbers	5	2		
2.3	Roots of Complex Numbers	5	2		
2.4	Regions in the complex Plane	3	2		
Text2–Sections:1-1	1				
3	Vector Differentiation	20			
	Vector Algebra(Review), Vector				
3.1	functions, Derivatives of vector	5	3		
	functions				
3.2	Arc length and unit tangent vector	4	3		
3.3	Curvature and normal vectors of a curve	6	3		
2.4	Directional derivatives and Gradient	5	3		
5.4	vectors	5	5		
Text3–Sections:13.1	,13.3,13.4,14.5	1			
4	Vector integration	19			
4.1	Line integrals	3	4		
4.2	Vector fields and line integrals: work,	5	4		
4.2	circulation and flux	5	4		
	Path independence, conservative field				
4.3	and potential function (proofs of	5	4		
	theorems excluded)				
	Green's theorem in plane (statement and	1	4		
--.--	problems only)	+	4		
4.5	Curl, Divergence in three dimensions	2	4		
Text 3 – Sections: 16.1 to 16.4,16.7(Curl only) 16.8 (Divergence in three dimensions only)					

L

Teaching and Learning		Classroom Proc	edure (Mo	de of trans	action)		
Approach	Lecture, Tutorial and Activity oriented						
Assessment Types		MODE	OF ASSE:	SSMENT			
	Α	Continuous Compreh	nensive As	sessment ((CCA) 30 N	Iarks	
		Compon	ents		Mark Distribution		
		Module T	est -1		5 Mai	rks	
		Module T	5 Mai	rks			
		Module Test -3			5 Mai	rks	
		Module Test -4			5 Mai	rks	
	Assignment/ Seminar				5 Mai	rks	
		Quiz/Viva				5 Marks	
		Total				30 Marks	
	B	End Semester	: Evaluati	on (ESE) 7	0 marks		
		([Maximum Time]	Question P 2 Hours,	attern Maximun	um Marks 70]		
		Module	Part A	Part B	Part C	Total	
			2	6	10		
		T	Marks	Marks	Marks	5	
		1	2	<u></u>	1	3	
		II	2	2	2	6	
		III	2	2	1	5	
		IV	2	6			
		Total no of questions	6	22			
		Number of questions55to be answered5			3	13	
		Total Marks	10	30	30	70	

TEXTBOOKS

1. Rosen, Kenneth H. Discrete Mathematics and Its Applications(7thed.).McGraw Hill Publishing Co.NewDelhi,2013.

2. Brown, James Ward., Churchil, Ruel V. Complex Variables and Applications (8th Edition), McGraw-Hill Publications, 2009.

3. Thomas, GeorgeB., Jr., MauriceD. Weir. Thomas' Calculus. 12th ed. Pearson, 2009.

SUGGESTED READINGS

- 1. Howard Anton, Irlbivens, Stephens Davis, Calculus(10th Edition), Wiley .
- 2. Griffiths, DavidJ. Introduction to Electromagnetism. 4th ed. Cambridge University Press,2013.
- 3. Joyce, David D., and George C. Parker. Vector Calculus and Its Applications. 4th ed. Jones&BartlettPublishers,2022.
- 4. Schroeder, GlennN. Vector Analysis for Computer Graphics.3rded.AKPeters/CRCPress,2017.
- 5. Tenenbaum, Morris T.,and Harry Pollard. Mathematics for the Non mathematician: An Intuitive Approach.8th ed.DoverPublications,2013.
- 6. Ponnusamy, S., Herb Silverman. Complex variables with applications. Springer Science & Business Media, 2007.
- 7. Krantz, Steven G. Complex Variables: a physical approach with applications and MATLAB.CRCPress,2007.
- 8. Kasana, Harvir Singh. Complex variables: theory and applications. PHILearning Pvt.Ltd.,2005

ADVANCED LEARNING

- 1. Borceux, Francis. Universal Algebra.2nded.Springer,2003.
- 2. Farin, SusanE., and WayneS. Sayle. Vector Calculus. 5thed. Freeman, 2018.
- 3. Hayes, Martin H. C. Introduction to Mathematical Proofs.2nded.OxfordUniversityPress,2021.
- 4. Maddox, Randall. A Transition to AdvancedMathematics.8thed.American Mathematical Society,2023.
- 5. Velleman, Daniel J. How to Prove It: A Structured Approach.4th ed.Pearson,2015.
- 6. Saff, E. B., Snider, A. D. Fundamentals of Complex Analysis with Applications to Engineering, Science and Mathematics,(2002).
- 7. Jeffrey, Alan. Complex analysis and applications.CRCPress,2005.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.A./B.Sc./B.Com. (Honours)						
Course Name	Mathematical Tools for	Mathematical Tools for Physical Sciences					
Type of Course	Discipline Specific Course (DSC B/C)						
Course Code	MCE3DSCMAT202						
Course Level	200-299						
Course Summary	This Mathematics minor course complements and enhances the undergraduate programmes on science disciplines such as Physics, Chemistry etc., by enabling the students to understand the concepts of complex numbers and analytic functions; to solve differential equations of different types; to identify different conic sections and its applications in possible areas and to determine unit tangent vector, principal normal vector, and curvature of different curves.						
Semester	3		Credits		4	Total	
Course	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours	
Details	0 11	3	0	1	0	75	
Pre- requisites, if any	Basic awareness of coor integrals	dinate syst	ems, vecto	rs, functions,	, derivatives,	and	

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No					
Upon	Upon the completion of the course, student will be able to:							
1	Distinguish between cartesian and polar co- ordinates and find the curvature and directional derivatives of curves.	К	1, 2, 3, 4, 10					

2	Evaluate Fourier series of different periodic functions in various Scientific problems.	Е	1, 2, 3			
3	Analyse the nature of differential equations.	An	1			
4	Understand and apply Laplace transform, inverse Laplace transform and to solve ODE.	U	2			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C),						

Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.	
		Vector Calculus			
	1.1	Polar coordinates		1	
	1.2	Curves in Space and tangents, Velocity and Acceleration, Arc length in space	20	1	
1	1.3	Curvature and Normal vectors of a curve		1	
	1.4 Directional derivatives and gradient vectors			1	
		Text 1: Chapter 11 – sections Chapter 13 – Sections: 13.1,1 Chapter 14 – Section: 14.5 Th	Statemer	nts Only	
		Fourier Series			
2	2.1	Fourier series		2	
	2.2	Functions of any period p=2L		2	
	2.3	Even and odd functions and half range expansions		2	

		Problems from section 2.2 and 2.3 (Practicum)	15		
		Text 2 : Chapter 10 - Section	s: 10.2 to	10.4	
		Differential Equations			
	3.1	Introductory Remarks, Nature of solutions		3	
_	3.2	Separable Equations	15	3	
3	3.3	First Order Linear Equations		3	
	3.4	Exact Equations		3	
		Text 3: Chapter 1 – Sections:	1.1 to 1.5		
		Laplace Transforms			
	4.1	Laplace Transform, Inverse Transforms, Linearity, Shifting.		4	
	4.2	Transforms of Derivatives and Integrals, Differential equations.		4	
4	4.3	Unit Step functions. Second shifting theorem, Dirac's delta function	Unit Step functions. Second shifting theorem, Dirac's delta function		
+	4.4	Differentiation and integration of transforms,		4	
	4.5	Convolution, integral equations	4		
		Problems from section 4.2 a	and 4.5 (P	racticum)
		Text 2 : Chapter 5 [Sections	5.1 to 5.5]	
		Proof of theorems excluded			
5		Teacher Specific C	Content		

(This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned) **This content will be evaluated internally**

Teaching	Classroom Procedure (Mode of transaction)							
and Learning Approach	I	Direct Instruction, Brainstorming Lecture, Explicit Teaching, Active Co- operative Learning.						
		MOI	DE OF ASS	SESSMENT				
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks						
		Сотро	nents		Mark Di	stribution		
		Module	Test -1		5 N	Iarks		
		Module	Test -2		5 N	Iarks		
		Module Test -3			5 N	Iarks		
		Module	5 N	Iarks				
		Assignment	5 Marks					
		Quiz/	5 Marks					
		Tot	30 N	Marks				
Assessment	B	End Semester Evaluation (ESE) 70 marks						
Types		Question Pattern						
		[Maximum Time 2 Hours, Maximum Marks 70]						
			Part A	Part B	Part C			
		Module	2 Marks	6 Marks	10 Marks	Total		
		Ι	2	2	1	5		
		II	2	2	2	6		
		III	2	2	1	5		
		IV	2	2	2	6		
		Total no of questions	8	8	6	22		
		Number of questions to be answered	5	5	3	13		
		Total Marks	10	30	30	70		

TEXT BOOKS:

- 1. Thomas, George B Jr. Thomas' Calculus, Twelfth Edition, Pearson, 2010
- Kreyszig, Erwin. Advanced Engineering Mathematics, Wiley student edition, 8th edition, 2006.
- 3. Simmons, G.F., Krantz, S.G. *Differential Equations*, Tata McGraw Hill-New Delhi, 2007.

SUGGESTED READINGS:

- 1. Spivak, Michael. Calculus and Applications. 11th ed. Pearson, 2023
- 2. Stewart, James. Calculus: Early Transcendentals. 10th ed. Cengage Learning, 2023.
- 3. Thompson, Silvanus P. Calculus Made Easy. 5th ed. Dover Publications, 2014.
- 4. Joel L. Schiff. The Laplace Transform-Theory and Applications. Springer 1999.
- Rajendra Bhatia. Fourier Series (2nd ed.) Texts and Readings in Mathematics. Hindustan Book Agency, Delhi 2003.
- 6. Siddiqi, A.H., Manchanada, P. A first course in Differential Equations, Mc Millan.
- Grewal, B. S., *Higher Engineering Mathematics*, 44th Edition, Khanna Publishers, 2021.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.A./B.Sc./ B. Com. (Honours)					
Course Name	Applied Mathe	matics in (Quantitativ	ve Analysis		
Type of Course	Discipline Spec	Discipline Specific Course (DSC B/C)				
Course Code	MCE3DSCMA	MCE3DSCMAT203				
Course Level	200-299					
Course Summary	This course condifferentiation, functions. The mathematical to	ntains diffe and an intr expertise o ools in vari	rence equat roduction to f this cours ous real life	tions, integration o quasi-concave a e will enable the e problems.	, applicati and quasi- students t	ons of convex o apply the
Semester	3	Credits			4	Total
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours
Details	Approach	3	0	1	0	75
Pre- requisites, if any	Basic different	iation, Part	ial different	tiation		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No			
Upon the completion of the course, student will be able to:						
1	Find the extreme value of two variable functions	S	1,2,8,10			
2	Find the integral of various types of functions and apply it in various problems	А	1,2,3			
3	apply the quasi concavity and quasi convexity	Α	1,3,8,10			
4	apply the difference equation technique	А	1,2,8			
*Remen	nber (K), Understand (U), Apply (A), Analyse (An), I	Evaluate (E), Create	(C), Skill			

(S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Modul e	Units	Course description	Hrs	CO No.
	1.1	The differential version of optimal condition		1
	1.2	Extreme value of a function of two variables		1
1	1.3	Quadratic forms - An excursion	20	1
1	1.4	Objective functions with more than two variables		1
		Practicum: Exercise 11.2,11.3,11.4		1
		Text 1: Chapter 11 - (exclude <i>n</i> variable case) 11	1.1-11.4	
	2.1	Indefinite integral		2
	2.2	Definite integral		2
	2.3	Improper integrals	15	2
2	2.4	Some economic applications of integrals		2
			2	
		Text 1 section 14.1-14.5		
	3.1	Effects of a constraint		3
	3.2	Finding the stationary values (exclude <i>n</i> variable case and multi constraint case)		3
3	3.3	Second order condition (exclude <i>n</i> variable case and multi constraint case)	20	3
	3.4	Quasi concavity and Quasi convexity, Utility maximization and consumer demand (first order condition only)		3
		Practicum: Exercise 12.2, Exercise 12.4 and 12.5		
		Text 1: Chapter 12- Sections12.1-12.5		

	4.1		4				
	4.2	Solving a first order difference equation	20	4			
4	4.3	The dynamic stability of Equilibrium	20	4			
	4.4		4				
		Text 1: Chapter 17 - Sections: 17.1 to 17.5.					
	Teacher S	pecific Contents					
5	(This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned) This content will be evaluated internally						

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion						
		MOI	DE OF ASS	ESSMENT			
	Α	Continuous Comp	Continuous Comprehensive Assessment (CCA) 30 Marks				
		Сотро	nents		Mark Di	stribution	
		Module '	Test -1		5 N	Iarks	
		Module '	Test -2		5 N	Iarks	
		Module '	Test -3		5 N	Iarks	
		Module Test -4			5 Marks		
	Assignment/ Seminar		5 Marks				
	Quiz/Viva				5 Marks		
Assessment		Tot	30 Marks				
Types	В	End Seme	End Semester Evaluation (ESE) 70 marks				
		Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]					
			Part A	Part B	Part C		
		Module	2 Marks	6 Marks	10 Marks	Total	
		Ι	2	2	1	5	
		II	2	2	2	6	
		III	2	2	1	5	
		IV	2	2	2	6	
		Total no of questions	8	8	6	22	

Number of questions to be answered	5	5	3	13
Total Marks	10	30	30	70

TEXT BOOK :

Chiang, C., Fundamental Methods of Mathematical Economics, McGraw Hills, (Latest Edition). **SUGGESTED READINGS:**

1. Carl P. Simon and Lawrence, Mathematics for Economists, Blume Viva Books, 2018

2. Knut Sydsaeter, Peter Hammond Prof. Arne Strom, Essential Mathematics for Economic Analysis (4th Edition), Pearson Publication, 2012.

3. Budnick, Frank, Applied Mathematics for Business, Economics and Social Sciences, McGraw Hills Education, 2017.

4. Dowling E. T., Mathematics for economists, Schum Series (latest edition)

5. Rosser, Mike, Basic Mathematics for Economists, Routledge, Taylor & Francis Group, 2003.

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	B.Sc. Mathematics Honours					
Course Name	Fundamentals of Inves	tment Scie	ence			
Type of Course	Discipline Specific Ele	ective – DS	SE			
Course Code	MCE3DSEMAT200					
Course Level	200-299					
Course Summary	This course is aimed a have relatively little students with the for investment decisions. you'll gain a solid un Analysis, Portfolio Co	ourse is aimed at the introductory investments class with students where relatively little familiarity with investments. This course equips that the foundational knowledge and tools to make information ment decisions. Through a blend of theory and practical application gain a solid understanding of Investment Fundamentals, Investment sis, Portfolio Construction, Investment Strategies, etc.			dents who equips the informed pplication, nvestment	
Semester	3	Credits			4	Total
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours
		4	0	0	0	60
Pre-requisites, if any	12 th level Mathematic	S				

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No			
	Upon the completion of the course, student will be abl	le to:				
1	Evaluate return and understand the risk associated	E	1,2,3,5,6,7,8,9,10			
2	Create investment portfolio	С	1,2,3,5,6,7,8,9,10			
3	Invest in the mutual fund by analysing the current situation	S	1,2,3,5,6,7,8,9,10			
4	Involve in bond transactions wisely	S	1,2,3,5,6,7,8,9,10			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Module	Units Course description			CO No.	
	1.1	Returns		1	
	1.2	The historical reward			
1	1.3	1.3 Average return: the first lesson, Return variability			
	1.4	The second lesson More on average return	-	1	
	1.5	Risk and return,Summary and Conclusions		1	
		Text 1: Chapter 1 - Sections: 1.1 to 1.7			
	2.1	Brokerage accounts		2	
	2.2	.2 Short sale			
	2.3	Investor objectives, constraints and strategies			
2	2.4 Forming an investment portfolio, Summary and conclusions		13	2	
		Text 1: Chapter 2 -Sections: 2.1-2.6			
	3.1	Classifying securities, Interest bearing assets, Equities		3	
	3.2	Derivatives, option contracts, Summary and conclusions		3	
3	3.3	Advantages and drawbacks of mutual fund investing, Investment companies and fund types, Mutual fund operations, Mutual fund cost and fees		3	
	3.4	Short-term funds long-term funds, mutual fund performances, Closed end funds, Exchange-traded funds, and hedge funds, Summary and conclusions		3	

Text 1: Chapter 3,4 - Sections: 3.1 to 3.6, 4.1-4.9			
---	--	--	--

-

E.

4	4.1	Interest rate history and Money market rates, Money market prices and rates						
	4.2	Rates and Yields on fixed income securities, The term structure of interest rates, Traditional theories of the term structure, Determinants of normal rates: A modern perspective						
	4.3	Bond basics, Straight bond prices and yield to maturity, more on yields						
	4.4	Interest rate risk and Malkiel's theorems, bond risk measures based on duration, Dedicated portfolios and reinvestment risk, immunisation		4				
		Text 1: Chapter 9& 10						

	Teacher Specific Contents	
5	(This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned) This content will be evaluated internally	

Teaching	Classroom Procedure (Mode of transaction)					
and Learning Approach	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion					
		МО	DE OF ASS	SESSMENT		
	Α	Continuous Comp	rehensive	Assessme	nt (CCA) 3	0 Marks
		Compo	onents		Mark Di	stribution
		Module Test -1			5 Marks	
		Module	Module Test -2			Iarks
		Module Test -3			5 Marks	
Assessment		Module	Module Test -4		5 Marks	
Types		Assignment/ Seminar		5 Marks		
		Quiz/Viva		5 Marks		
		Total			30 Marks	
	B	End Semester Evaluation (ESE) 70 marks				
			Question	Pattern		
		[Maximum]	fime 2 Hou	rs, Maximui	n Marks 7()]
		Modulo	Part A	Part B	Part C	- Total
		Mouule	2 Marks	6Marks	10	10181

			Marks	
Ι	2	2	1	5
II	2	2	2	6
III	2	2	1	5
IV	2	2	2	6
Total no of questions	8	8	6	22
Number of questions to be answered	5	5	3	13
Total Marks	10	30	30	70

TEXT BOOK:

1. Bradford D Jordan Thomas W Miller Jr, Fundamentals of investment valuation and management fifth edition, McGraw-Hill/Irwin, 2009.

SUGGESTED READINGS:

- 1. David G. Luenberger. Investment Science, Oxford University Press, Delhi, 1998.
- 2. John C. Hull. Options, Futures and Other Derivatives (6th Edition), Prentice- Hall India, Indian reprint, 2006.
- 3. Sheldon Ross. An Elementary Introduction to Mathematical Finance (2nd Edition), Cambridge University Press, USA, 2003.
- 4. Kevin J Hastings. Introduction to Financial Mathematics, CRC Press, 2015.
- 5. Robert Buchanan. An Undergraduate Introduction to Financial Mathematics.
- 6. Lerner and Zima. Business Mathematics (Schaum's Outline Series).
- 7. Brealy and Myers. Corporate Finance, Mc Graw Hill, 2023.
- 8. Sharpe, N.J. and Bailey Upper Saddler. River. Investment Prentice Hall, 1999.
- 9. Bodie, Kane and Marcus. Investments, McGraw-Hill Irwin, 2005.

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	B.Sc. Mathematics Honours							
Course Name	Game Theory and Pro	Game Theory and Project Management						
Type of Course	Discipline Specific Elective – DSE							
Course Code	MCE3DSEMAT201							
Course Level	200-299							
Course Summary	This course delves into the fundamental principles of game theory and project management, providing the students with a comprehensive understanding of strategic decision making, methods of solving games, techniques of project management and critical paths analysis. This course aims to equip students with the skills to strategically solve complex decision making scenarios and to successfully manage projects in their future fields.							
Semester	3	Credits			4	Total		
Course	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours		
Details		4	0	0	0	60		
Pre- requisites, if any								

CO No:	Expected Course Outcome	Learning Domains	PO No:
Upon th	ne successful completion of the course, the stud	dent will be able to	
1	Understand how optimal strategies are formulated in conflict and competitive environment.	U	1,2,
2	Apply various methods to select and execute various optimal strategies to win the game.	E	1,2,3,4
3	Understand the significance of using PERT and CPM techniques for project management.	U	1,2
4	Determine critical path and floats associated with noncritical activities and events along with total project completion time.	E	1,2,3,4
* D 1			

COURSE OUTCOMES (CO)

**Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)*

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours		
1		Game Theory: An Introduction				
	1.1	Game Theory: Introduction, Two-Person Zero- Sum Games	1	13		
	1.2	Pure Strategies: Games with Saddle Point	1	15		
	1.3	Mixed Strategies: Games without Saddle Point, Rules of Dominance	1			
	Text 1: Chapter 12 – Sections: 12.1 to 12.5					
2		Game Theory: Solution Methods		17		

	2.1	Solution Methods: Algebraic Method	2			
	2.2	Arithmetic Method				
	2.3	Matrix Method	2			
	2.4	Graphical Method	2			
	2.5	Linear Programming Method	2			
	Text 1: C	Chapter 12 – Sections: 12.6.1 to 12.6.5				
3		Fundamentals of Project Management				
	3.1	Project Management: Introduction, Basic Difference between PERT and CPM	3			
	3.2	Phases of Project Management	3	13		
	3.3	B.3 PERT/CPM Network Components and Precedence Relationships				
	Text 1: C	: Chapter 13 – Sections: 13.1 to 13.4				
4		Critical Path Analysis				
	4.1	Critical Path Analysis: Forward Pass Method	4			
	4.2	Backward Pass Method	4			
	4.3	Float of an Activity and Event	4			
	4.4 Critical Path		4	17		
	Text 1: Chapter 13 – Sections: 13.5.1 to 13.5.4					
	Teacher Specific Contents					

Teaching and		Classroom Procedure (Mode of transaction)					
Learning Approach	Le	Lecture, Teaching, Interactive instruction, Seminar, Assignment, and Group discussion.					
		MODE OF ASSESSMENT					
	A Continuous Comprehensive Assessment (CCA) 30 N						
		Compo	nents		Mark Di	stribution	
		Module	Test -1		5 N	Iarks	
		Module	Test -2		5 N	Iarks	
		Module	Test -3		5 N	Iarks	
		Module	Test -4		5 N	Iarks	
		Assignment	t/ Seminar		5 N	Iarks	
		Quiz/	Viva		5 N	Iarks	
		Tot	al		30 Marks		
Assessment	В	End Seme	ster Evalua	tion (ESE)	70 marks		
Types			Question	Pattern			
		[Maximum T	'ime 2 Houi	rs, Maximur	n Marks 7()]	
			Part A	Part B	Part C	m / 1	
		Module	2 Marks	6 Mark S	10 Marks	Total	
		I	2	2	1	5	
		II	2	2	2	6	
		III 2 2		1	5		
		IV	2	2	2	6	
		Total no of questions	8	8	6	22	
		Number of questions to be answered	5	5	3	13	
		Total Marks	10	30	30	70	

TEXT BOOK:

1.Sharma J.K. Operations Research: Theory and Applications – 6th edition. Trinity Press an Impint of Laxmi Publications Pvt. 2016.

SUGGESTED READINGS:

1.Frederick S. Hillier., Gerald J Lieberman. Introduction to Operations Research 10th edition. McGraw Hill Education, 2015.

2. Taha, Hamdy A. Operations Research: An Introduction -8^{th} edition. Pearson Education, 2007.

3. Kanti Swarup., Gupta "P.K., Man Mohan. Operation Research. Sultan Chand and Sons, 2010.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B. Sc. Mathematics Honours					
Course Name	Mathematical Musings beyond Classroom					
Type of Course	Discipline Specific Elective – DSE					
Course Code	MCE3DSEMAT202					
Course Level	200-299					
Course Summary	Step beyond the from a mere subj and allowing you	confines of ect into a g 1 to revel in	classrooms ateway, lea the beauty	, where mathe ding you to in of mathemati	ematics tra finite poss cs.	nsforms sibilities
Semester	3	Credits			4	Total
Course	Learning	Lecture	Tutorial	Practicum	Others	TIOUIS
Details	Approach	4	0	0	0	60
Pre- requisites, If any				·		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No						
Upon t	Upon the completion of the course, student will be able to:								
1	Understand the evolution of mathematical thought and its role in shaping scientific and technological advancements.	U	6						
2	Explore the intersection of mathematics with other fields, as portrayed in films.	An	3,5,7						
3	Demonstrate how mathematics intersects with various disciplines, including science, arts, and humanities.	С	3						
4	Encourage independent research on specific mathematical topics, historical developments, or philosophical questions.	Ι	6,10						

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
1		Exploring Enchanting Texts		15
	1.1	An Introduction to Exploring Enchanting	1	
		Textsor Mathematics.		
	1.2	Text Book 1Chapter- 1: Nothing Doing [The Origin of Zerol, Chapter, 3: Nothing	1	
		Ventured [Zero Goes East]		
	1.3	Text Book 2Part Five: Data (Chapter- 22: The	1	
		New Normal, Chapter- 23: Chances Are, Chapter- 24: Untangling the Web)		
	1.4	Text Book 3Chapter- 3: Einstein vs. Dostoevsky	1	
	Text 1, Te	ext 2, and Text 3		
2		Math Meets the Silver Screen		15
	2.1	Introduction to Mathematics on the Silver Screen.	2	
	2.2	The film <i>A Beautiful Mind</i> (2001) directed by Ron Howard.	2	
	2.3	The film <i>The Imitation Game</i> (2014) directed by Morten Tyldum.	2	
	2.4	The film <i>The Man Who Knew Infinity</i> (2015) directed by Matthew Brown.	2	
	2.5	The film <i>Hidden Figures</i> (2016) directed by Theodore Melfi.	2	
3		Mathematical Prelude: Kerala's Historical Journey		15
	3.1	The Actors, The Social Background.	3	
	3.2	The Motivation and Method, The Madhava- Gregory Series for the Inverse Tangent, The Madhava- Newton Power Series for the Sine and Cosine.	3	

Module	Units	Course Description	CO No:	Hours
1		Exploring Enchanting Texts		15
	3.3	Transmission of Kerala Mathematics:	3	
		Establishing Transmissions: A		
		Digression, The Case for Transmission:		
	2.4	Applying the Neugebauer Criteria.	2	
	3.4	The Case for Transmission: Applying	3	
		Opportunity A Conjecture on the Mode		
		of Acquisition of Manuscripts by the		
		Jesuits.		
	Text 4: C	hapter- 10: A Passage to Infinity: The Kerala E	oisode.	
4		Unvailing the Philosophy of Mathematics		15
		Unverning the r mosophy of Wathematics		
	4.1	Text Book 5Part One, Chapter- 5: Five	4	
		Classical Puzzles.		
	4 2	Text Book 6Chapter- 1: Mathematics and Its	4	
	1.2	Philosophy (Sections 1.1 &1.2).		
	4.3	Text Book 6Chapter- 2: The Limits of	4	
		Mathematics.		
	T 4 7			
	Text 5 and	d Text 6		
5	Teacher Sp	pecific Contents(This can be either classroom teac	hing, practic	al
	session, fiel	d visit etc. as specified by the teacher concerned)		
	This cont	ent will be evaluated internally		

Teaching and Learning Approach		Classroom Procedure (Mode of transaction)			
		Direct Instruction, Brain Storming Approach, Interactive Instruction, Watching Movies, Group Discussion, and Presentation by Individual Student/ Group Representatives.			
		MODE OF ASSESSMENT			
	Α	Continuous Comprehensive Assessment (CCA)			
Assessment Types		Components	Mark Distribution		
		Module Test -1	5 Marks		
		Module Test -2	5 Marks		

		Module Test -3	5 Marks			
		Module Test -4			5 Marks	
		Assignment			5 Marks	
		Quiz/Viva	5 Marks			
		Total			30 Marks	
	В	End	Semester E	Examination	(Written)	
		Question Pattern [Maxi	mum Time	2 Hours, M	laximum Ma	arks 70]
		Modulo	Part A	Part B	Part C	Total
		Module			10	Total
			2 Marks	6 Marks	Marks	
		I	2 Marks 2	6 Marks	Marks	5
		I II	2 Marks 2 2	6 Marks 2 2	Marks 1 2	5
		I II III	2 Marks 2 2 2 2	6 Marks 2 2 2 2 2	Marks 1 2 1	5 6 5
		I II III IV	2 Marks 2 2 2 2 2 2	6 Marks 2 2 2 2 2 2 2	Marks 1 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2	5 6 5 6
		I II III IV Total no of questions	2 Marks 2 2 2 2 2 8	6 Marks 2 2 2 2 2 8	Marks 1 2 1 2 1 2 6	5 6 5 6 22
		I II III IV Total no of questions Number of questions to be answered	2 Marks 2 2 2 2 2 8 5	6 Marks 2 2 2 2 8 5	Marks 1 2 1 2 6 3	5 6 5 6 22 13

TEXT BOOK:

- 1. Seife, Charles. *Zero: The Biography of a Dangerous Idea*. United States, Penguin Publishing Group, 2000.
- 2. Strogatz, Steven Henry. *The Joy of X: A Guided Tour of Math, from One to Infinity*. United States, Houghton Mifflin Harcourt, 2012.
- 3. Hoffman, Paul. *The Man Who Loved Only Numbers: The Story of Paul Erdos and the Search for Mathematical Truth*. London, Fourth Estate, 1999.
- **4.** George Gheverghese Joseph. *The Crest of the Peacock Non-European Roots of Mathematics* (3rd Edition). Princeton University Press, Princeton & Oxford, 2011.
- 5. Hersh, Reuben. *What is Mathematics, Really?*. United Kingdom, Oxford University Press, 1997.
- 6. Colyvan, Mark. *An Introduction to the Philosophy of Mathematics*. United Kingdom, Cambridge University Press, 2012.

SUGGESTED READINGS:

- 1. Singh, Simon. *Fermat's Last Theorem*. United Kingdom, Harper Collins Publishers, 2012.
- 2. Oakley, Barbara A. A Mind for Numbers: How to Excel at Math and Science (Even If You Flunked Algebra). United Kingdom, Penguin Publishing Group, 2014.

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	B.A./B.Sc./B.Com.(Honours)					
Course Name	Mathematics of Nature and Art					
Type of Course	Multi–disciplinary Course - MDC					
Course Code	MCE3MDCMAT2	MCE3MDCMAT200				
Course Level	200-299					
Course Summary	The course explo arts, science, and fractions in vario phenomena, artis applications acro	ores Fibona d the signif us contexts stic express oss disciplin	acci numbe icance of th s. It helps to sions, math nes	rs' diverse appl ne golden ratio o understand th nematical princi	lications in and contin leir role in r ples, and p	nature, ued natural practical
Semester	3	Credits			3	Total
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours
		3	0	0	0	45
Pre- requisites, if any	Nil					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No			
Upon	Upon the completion of the course, student will be able to:					
1	Understand Fibonacci and Lucas numbers, their properties, and applications in natural phenomena and diverse real-world scenarios	U, A	2,3			
2	Analyse and apply Fibonacci's impact on artistic expressions, scientific realms, and interdisciplinary connections across various fields.	K, U, A	1,2,3			
3	Comprehend the significance of the golden ratio, its geometric interpretations, applications in human anatomy, arts and mathematical constructions.	K, U, A	2,3,10			
4	Understand and apply the concepts of finite and infinite continued fractions, convergence, recursive definitions, and their implications in solving problems.	K, U, A	2,3			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Module	Units	Course description	CO No.	Hrs
		Fibonacci Numbers in Nature, Arts & Science		
	1.1	The rabbit problem, Fibonacci numbers, Recursive definition, Lucas numbers, Fibonacci and Lucas primes.	1	
	1.2	Different types of Fibonacci and Lucas numbers.	1	
1	1.3	Fibonacci numbers in nature: Fibonacci and the earth, Fibonacci and flowers, Fibonacci and trees, Fibonacci and sunflowers, Fibonacci - pinecones, artichokes and pineapples, Fibonacci and bees, Fibonacci and subsets.	1	16
	1.4	Fibonacci and atoms, Fibonacci and reflections. Fibonacci - paraffins and cycloparaffins, Fibonacci and music, Fibonacci and poetry.	2	

Module	Units	Course description	CO No.	Hrs	
	1.5	Fibonacci and compositions with 1's and 2's, Fibonacci and neurophysiology. (Theorems 3.1,3.2,3.3- statement only)	2		
	Text 1: Chapters 2 & 3 (Relevant sections only)				
		Fibonacci Numbers in Arts and Science			
	2.1	The golden ratio, Mean proportional, A geometric interpretation	3	15	
2	2.2	Ruler and compass construction, Euler construction. Generation by Newton's method.	3		
	2.3	The golden ratio revisited: Golden ratio and human body, Mexican Pyramids, Differential equations, Golden ratio and centroids of circles.	3		
	Text 1: Chapters 20 & 21 (Relevant sections only)				
		Continued Fractions			
	3.1	Finite continued fractions, Convergence of a continued fraction.	4	14	
3	3.2	Recursive definition, Infinite continued fraction	4		
	3.3	An infinite continued fraction for $-\beta$, Pell's equation.	4	-	
	Text 1: Chapter 27				
4	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned</i>) This content will be evaluated internally			al will	

Teaching	Classroom Procedure (Mode of transaction)				
and					
Learning	Lecture and Tutorial				
Approach					
Assessment	MODE OF ASSESSMENT				
Types					
Α	Continuous Comp	orehensive A	Assessment	(CCA) 25	Marks
---	---------------------------------------	--------------	-------------------	-------------	-------
	Compo	Mark Di	Mark Distribution		
	Module	Test -1		5 N	Iarks
	Module	Test -2		5 N	larks
	Module	Test -3		5 N	Iarks
	Assignment	t/ Seminar		5 N	Iarks
	Quiz/	Viva		5 N	Iarks
	Tot	al		25 N	Marks
B	End Seme	ster Evalua	tion (ESE)	50 marks	
		Question	Pattern		
	[Maximum Tin	ne 75 Minu	tes, Maxim	um Marks	50]
		Part A	Part B	Part C	
	Module	2 Marks	5 Marks	10 Marks	Total
	Ι	3	2	2	7
	II	3	2	1	6
	III	2	2	1	5
	Total no of questions	8	6	4	18
	Number of questions to be answered	5	4	2	11
	Total Marks	10	20	20	50

ТЕХТ ВООК:

Thomas Koshy. Fibonacci and Lucas numbers with applications, John Wiley & Sons, Inc, 2001. **SUGGESTED READINGS:**

1. Richard A Dunlap. The Golden Ratio and Fibonacci Numbers, World Scientific Publishing Co.Pvt.Ltd.

2. Mario Livio. The Golden Ratio, Broadway Books, New York.

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	B.Sc. Mathematics Honours					
Course Name	Mastering Problem Solving Through Vedic Mathematics					
Type of Course	Value Addition C	ourse- VA	C			
Course Code	MCE3VACMAT2	00				
Course Level	200-299					
Course Summary	This course provides a comprehensive exploration of Vedic Mathematics, a traditional Indian system known for its speed and efficiency in problem-solving. Through a structured four-unit approach, students will understand the importance of Vedic Mathematics, advanced arithmetic techniques, root calculations, and applications in algebra, empowering them with valuable tools for quick and accurate problem-solving.					
Semester	3	Credits			3	Total
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours
Details	Approach	3	0	0	0	45
Pre- requisites, if any	Nil					

CO No.	Expected Course Outcome	Learning Domains *	PO No		
Upon ti	ne successful completion of the course, student will be able	e to:			
	Develop a comprehensive understanding of Vedic				
	Mathematics principles, techniques, and their historical				
1	context. Attain proficiency in mental calculation	U	1,2,3,4,8,10		
	techniques for basic computations.				

2	Apply Vedic Mathematics to solve various mathematical problems, including algebraic expressions and equations, demonstrating versatility in problem-solving. Develop advanced problem-solving skills by systematically using Vedic Mathematics techniques to confidently handle complex scenarios.	A, An	1,2,3,4,8,10		
3	Apply Vedic Mathematics skills to real-world scenarios, including ratio and proportions, percentage calculations, profit and loss analysis, and interest calculations.	A	1,2,3,4,8,10		
4	Apply Vedic Mathematics principles to algebraic expressions, including efficient multiplication of polynomials and solving systems of linear equations.	A, An	1,2,3,4,8,10		
5	Empower students with traditional Indian mathematical wisdom, providing them with valuable tools deeply rooted in cultural and historical contexts.	U, I, Ap	1,3,6,7,8,10		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Course description	CO No.	Hrs
		Foundations of Vedic Mathematics		
1	1.1	Overview of Vedic Mathematics- History and its importance, Vedic Sutras and sub-sutras.	1,3,5	
	1.2	Addition : Ekadhikena Purvena	1	
	1.3	Subtraction :Nikhilam Navatascaramam Dasatah, Digit Separator Method	1	12
	1.4	 Multiplication : Ekanyunena Purvena, Multiplication of numbers having two-digits and three-digits using Urdhva Tiryagbhyam, Multiplication by series of 1's and 9's 		
	1.5	Division : Urdhva – Tiryakgbhyam	1	

Module	Units	Course description	CO No.	Hrs			
	Text 1	: Specified sections from Chapters 1 to 4 & 6					
		Advanced Arithmetic Techniques and its Applications	Τ				
	2.1	Squares: Squares of numbers up to three-digits using Ekadhikena Purvena, Dwanda yoga	2,5				
	2.2	Square roots : Duplex Method	2	19			
	2.3	Cubes: Cubes of two-digit numbers using Nikhilam	2,5				
2	2.4	Cube roots : Cube Root of a number having less than 7 digits using Beejank	2,5				
	2.5	Divisibility and simple Osculators	2	1			
	2.6	Applications: Ratio and proportions, Percentage, Profit and Loss, Simple interest, Compound Interest	3				
	Text 1: Specified sections from Chapter 7, 8, 10 & 11 Text 2: Chapter 29 Text 3: Chapter 18, 20, 23, 24 & 25						
	Algebraic Multiplication and Equation Solving						
	3.1	Multiplication in algebra : Multiplication of polynomials of the form $ax + by$, $ax^2 + bx + c$	4	14			
3	3.2	Simple Equations: Solving simple equations in one variable	4				
	3.3 Simultaneous Simple Equations : Solution of system of linear equations in two variables		4				
	Text 1: Specified sections from Chapter 5 Text 2: Specified sections from Chapters 11, 12, 13 & 15						
4	Teach sessio evalua	er Specific Contents(This can be either classroom teaching, pra n, field visit etc. as specified by the teacher concerned)This cont ated internally	actical t ent will	be			

Teaching	Classroom Procedure (Mode of transaction)			
and	Interactive Lectures, Conduct Regular Practical Workshops Focusing on			
Learning	Mental Calculation Techniques and Vedic Mathematics Applications, Provide			
Approach	Hands-on Exercises with Immediate Feedback to Reinforce Learning.			
Assessment Types	MODE OF ASSESSMENT			

Α	Continuous Comp	rehensive	Assessme	nt (CCA) 2	5 Marks
	Compo		Mark Di	istribution	
	Module	Test -1		5 N	Iarks
	Module	Test -2		5 N	Aarks
	Module	Test -3		5 N	Aarks
	Assignment	t/ Seminar		5 N	Aarks
	Quiz/	Viva		5 N	/larks
	Tot	al		25 1	Marks
В	End Seme	ster Evalua	ation (ESE)	50 marks	
	[Maximum Ti	Question me 75Minu	tes, Maximu	m Marks 5	0]
		Part A	Part B	Part C	
	Module	2 Marks	5 Marks	10 Marks	Total
	Ι	3	2	2	7
	II	3	2	1	6
	III	2	2	1	5
	Total no of questions	8	6	4	18
	Number of questions to be answered	5	4	2	11
	Total Marks	10	20	20	50

TEXT BOOKS:

- 1. Thakur, Rajesh Kumar. The Essentials of Vedic Mathematics, Rupa Publications India Pvt Ltd, 2013.
- 2. Bharati Krishna Tirthaji. Vedic Mathematics: Sixteen Simple Mathematical formulae from the Vedas, Motilal Banarsidass, 1981.
- 3. Tyra, M. Magical Book On Quicker Maths, BSC Publishing Co. Pvt. Ltd, 5th Edition, 2018.

SUGGESTED READINGS:

- 1. Singhal, Vandana. Vedic Mathematics for all ages: A Beginner's Guide, Motilal Banarsidass, 2014.
- 2. Patankar, U. S., S. M. Patankar. *Elements of Vedic Mathematics*, TTU Press, 2018.

ADVANCED READING:

1. Dattoli, Giuseppe, Marcello Artioli, Silvia Licciardi. *Vedic Mathematics: A Mathematical Tale from the Ancient Veda to Modern Times*, World Scientific Publishing Co Pte Ltd, 2021.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mathematics Honours					
Course Name	Matrix and Nun	ıber Theory				
Type of Course	Discipline Specific	Discipline Specific Course (DSC A)				
Course Code	MCE4DSCMAT2	MCE4DSCMAT200				
Course Level	200-299					
Course Summary	This course provides an introduction to the fundamental concepts and techniques of matrix algebra and number theory. The first two modules deal with matrix algebra and solutions of systems of linear equations. Third module starts with basics for theory of numbers which will be followed by the Division algorithm, Euclidean algorithm etc. Fourth Module involves some classical theorems by Fermat, Wilson and Euler.					
Semester	4	Credits	5		4	
Course Details	Learnin g Approac h	Lectur e 3	Tutoria l 0	Practicu m 1	Other s 0	Tota l Hours 75
Pre- requisite s, If any	Basic idea abou	t matrices, in	ntegers and	primes.		

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:			
	Upon the successful completion of the course, the student will be able to					
1	Demonstrate a thorough understanding of the basic concepts of matrix algebra	U	1, 2, 3			
2	Formulate systems of linear equations into matrices	U	1, 2, 4			
3	Solve systems of linear equations using Gaussian elimination	А	1, 2, 3			
4	Analyse the properties of systems of linear equations and their solutions	An	1, 2, 3, 4			
5	Demonstrate understanding of fundamental concepts in number theory, including congruence, divisibility, GCD etc	U	1, 2			
6	Analyse Fermat's Little Theorem, understanding its significance and implications	An	1, 2, 3			
7	Comprehend Euler's Phi Function and Euler's Theorem and Wilson's theorem and their applications in determining primality.	U	1, 2, 3			
8	Apply computational software and tools in matrix computations and also concepts of number theory.	А	1, 2, 3, 9			
, Unde Appro	, Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Course Description	Hours	CO NO:
	1.1	Matrix Operations		1
1	1.2	Properties of matrix operations	20	1
	1.3	Different types of matrices		1

	1.4	Matrix representation of system of linear equations		2
	1.5	Elementary row transformations and elementary matrices		3
	1.6	Gaussian Elimination, Row-echelon form, Hermite form		3
	Problems (Practicum)			1,2,3
	Text 1: only)of	Chapter 1; Chapter 3 [upto Exercise 3.10 -Theorems (St all theorems in Chapter 3]	atement	
2				
	2.1	Linear combination and independence/dependence of rows and columns of matrices		4
	2.2	Row equivalent matrices		4
	2.3	Row rank, column rank and rank of a matrix	15	4
	2.4	2.4 Normal form and equivalent matrices		4
	2.5	Consistency of system of linear equations		4
	2.6	Invertible Matrices		4
		Problems (Practicum)		4
	Text 1	Remaining portions of Chapter 3 and Chapter 4 [Theore	ems(State	ment only)
	and the	eir applications]		
3				
	3.1	The Division Algorithm		5
	3.2	The Greatest Common Divisor		5
	3.3	The Euclidean Algorithm	20	5
	3.4	The Fundamental Theorem of Arithmetic		5
	3.5	The Sieve of Eratosthenes		5
	Problems (Practicum)			5

	Text 2: Chapter 2 – Sections: 2.2 (Statements and applications only), 2.3[Theorem 2.3 and 2.4(Statements only)], 2.4 [Theorem 2.7 and 2.8(Statements only and applications)]; Chapter 3 - Sections: 3.1 & 3.2 (Theorem 3.4 only)						
4							
	4.1	Basic Properties of Congruence		5			
	4.2	20	6				
	4.3	Wilson's Theorem		7			
	4.4	Euler's Phi Function and Theorem		8			
	Text 2: Chapter 4 – section: 4.2; Chapter 5 – Sections: 5.2 (Up to Theorem5.2), 5.3 (Up to Theorem 5.5); Chapter 7 – Sections: 7.2 (Theorem 7.2-Statement only and applications) & 7.3						

		Practicum
Module 1		Question No.2.16,2.17,2.19,2.22,2.28,2.23,2.24 (Lipschutz, S., Lipson, M., Schaum's outline of theory and problems of linear algebra (4th ed.). McGraw-Hill)
Module 2		Question No 3.12,3.15,3.18,3.23 Lipschutz, S., Lipson, M Schaum's outline of theory and problems of linear algebra (4th ed.). McGraw-Hill.
Module 3		Problems 2.3, Question No. 4, 7, 12, 21 [Burton, David M Elementary number theory (7th ed.). McGraw-Hill Education, 2017] Chapter 1, Exercise Question No. 10,11 [Apostol, T. M An Introduction to Analytic Number Theory (2nd ed.). Springer, 1976.
		Problems 4.2Question No. 4Problem 5.2 Question No. 1[Burton, David M.
Module 4		Elementary number theory (7th ed.). McGraw-Hill Education, 2017 Chapter 5, Exercise Question No. 3 [Apostol, T. M An Introduction to Analytic Number Theory (2nd ed.). Springer, 1976.
5		Activities
	5.1	(i) Activity for advanced learners:Proofs of theorems in Modules 1 and 2Use of computational software or tools (like Python, Sagemath etc.) to perform the matrix operations in the modules 1 and 2
	5.2	Illustrate the technique of Sieve of Eratosthenes for finding all primes below a given integer Apply Congruence relation to encrypt and decrypt a message using Caesar Cipher and Vigenere's approach.

	(meant for internal evaluation only)for Activity (i) Chapters 1, 3, 4 of Textbook 1 for Activity (ii) any suitable textbook of students' choice (depending on the software used)for Activity (iii) Chapter 3-Sec. 3.2 of Textbook 2for Activity (iv) Chapter 10 of Textbook 2
--	--

Teaching	Cl	Classroom Procedure (Mode of transaction)						
and Learning Approach	Le	Lectures, Tutorials, Interactive Sessions, Blended Learning						
	M	ODE OF ASSESSMENT						
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks						
		Components	Components			tribution		
		Module Test -1			5 Marks			
		Module Test -2			5 Marks			
		Module Test -3			5 Marks			
		Module Test -4			5 Marks			
		Assignment/ Seminar			5 Marks			
		Quiz/Viva			5 Marks			
		Total			30 Marks			
Assessment	B	B End Semester Evaluation (ESE) 70 marks						
Types		Question Pattern[Maximum Time 2 Hours, Maximum Marks						
			Part A	Part B	Part C			
		Module	2 Marks	6Marks	10 Marks	Total		
		Ι	2	2	1	5		
		II	2	2	2	6		
		III	2	2	1	5		
		IV	2	2	2	6		
		Total no of questions	8	8	6	22		
		Number of questions to be answered	5	5	3	13		
		Total Marks	10	30	30	70		

TEXT BOOKS

- 1. Blyth, T. S., and E. F. Robertson. Basic linear algebra. Springer, 2007.
- 2. Burton, David M.. *Elementary number theory (7th ed.)*. McGraw-Hill Education, 2017.

SUGGESTED READINGS

- 1. Strang, Gilbert. Introduction to linear algebra (5th ed.). Wellesley-Cambridge Press, 2016.
- 2. Lipschutz, S., Lipson, M.. Schaum's outline of theory and problems of linear algebra (4th ed.). McGraw-Hill.
- 3. Kumaresan, S. Linear Algebra: A Geometric Approach. PHI Learning., 2015.
- 4. Bronston, T. A., Costa, A. C. R. . *Linear algebra: An introduction (4th ed.)*. Academic Press, 2013.
- 5. Apostol, T. M. . An Introduction to Analytic Number Theory (2nd ed.). Springer, 1976.
- 6. Niven, I., Zuckerman, H. S., Montgomery, H. L. *An Introduction to Number Theory* (5th ed.). Wiley, 1991.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mathematics Honours						
Course Name	A Journey Through the Basics of Mathematical Analysis						
Type of Course	Discipline Specific C	ourse (D	SC A)				
Course Code	MCE4DSCMAT201						
Course Level	200-299						
Course Summary	This course covers elementary properties of real and complex numbers, with a focus on analytic functions and various mathematical functions. Practical applications and problem-solving skills are emphasized throughout. The course provides an in-depth review of complex numbers, exploring their fundamental characteristics, exponential representations, and geometric importance. It delves into functions of complex variables, presenting the Cauchy-Riemann equations as a means of identifying analytic functions. The conclusion includes a comprehensive discussion of special functions of complex variables, such as inverse trigonometric and hyperbolic functions, as well as exponential, logarithmic, trigonometric, and hyperbolic functions.						
Semester	4	Credits			4	Total Hours	
Course	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others		
Details		3	0	1	0	75	
Pre- requisites, if any	Basic awareness of coor	rdinate sys	tems, vecto	ors, functions	s, derivatives,	and integrals	

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:			
	Upon the successful completion of the course, the student will be able to					
1	Demonstrate a comprehensive understanding of the real numbers as a complete ordered field, distinguishing their properties from those of other algebraic structures with similarities to real numbers.	А	1,2,3			
2	Analyze the concept of completeness property in real numbers and apply the supremum property in mathematical analysis and problem-solving. Identify various numerical representations of real numbers and categorize different types of intervals.	An	1,2,3, 10			
	Understand the basic properties of complex plane, its geometrical dimensions and complex functions. Identify regions of complex plane and behaviour of continuous and differentiable functions of complex variables	An	1,2,3			
5	Analyse analytic and harmonic of functions of complex variables. Categorise the basic properties of some elementary functions of complex variables.		1,2,3, 10			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
	1.1	Graphical visualization of Elementary Functions using Geogebra/ Desmos	1	
1	1.2	Finite and Infinite Sets.	1	15
	1.3	The Algebraic and Order Properties of R.	1	
	1.4	Absolute Value and the Real Line.	1	

		Text 1: Chapter 1 - Section: 1.3 (Concepts, staten informal proofs and problems only); Chapter 2 -	ents of the t Sections:2.1	heorems, & 2.2.
2.1	Th	e Completeness property of R	2	
2.2	Ap	oplications of supremum property	2	20
2.3	Int	tervals	2	20
	Pr Ex	roblems (Practicum) Section 1.3, xercise 1-7 Principles of Real Analysis Malik and Arora	2	
Text 1: stateme	Chapt ents of	ter 2 - Sections: 2.3, 2.4 (Theorems 2.4.7 – Statemen the theorems and problems only).	t only),2.5 ((Concepts,
3.1	Ba	sic Properties of Complex Numbers	3	
3.2	Ex	ponential form of Complex Numbers	3	
3.3	Ro	oots of Complex Numbers	3	
3.4	Re	egions in the complex Plane	3	
3.5	Fu	unctions of the complex Variables	3	20
3.6	Li	mits and Continuity	3	
3.7	Di	fferentiation of Complex functions and CR Equations	3	
3.8	Aı	nalytic and Harmonic functions	3	
	Pr	acticum: Problems	3	
Text 2: problem	Sections only	ons: 1 to 12,15,16,18 to 22,24 to 26 (Concepts, statem y from sections 16, 21 and 22)	ents of the t	heorems and
4.1	Ex	sponential functions	4	
4.2	Lo	ogarithmic functions	4	1
4.3	Tr	igonometric and Hyperbolic functions	4	
4.4	In	Inverse Trigonometric and Hyperbolic functions		20
-	Pr	roblems (Practicum)	4	
	Те	xt 2: Sections: 29 to 32, 34 to 36		

	Teacher Specific Contents			
5	(This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned)			
	This content will be evaluated internally			
	Practicum			
	P racticum is designed to provide supervised practical application of theoretical knowledge and skills. I t's purpose is to encourage creativity and develop Problem solving skills. T he practicum component is to be done in the classroom under the strict guidance of the teachers. A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.			

Teaching		Classroom Procedure (Mode of transaction)							
and Learning Approach		Lecture, Tutorial and Activity oriented							
		MODE OF ASSESSMENT							
	Α	Continuous Compr	Continuous Comprehensive Assessment (CCA) 30 Marks						
		Compo	onents		Mark Di	stribution			
		Module	Test -1		5 N	Iarks			
		Module	Module Test -2			Iarks			
		Module	Module Test -3			Iarks			
		Module	5 Marks						
		Assignment	5 Marks						
		Quiz/Viva				Iarks			
Assessment		Tot	30 Marks						
Iypes	В	End Semester Evaluation (ESE) 70 marks							
		Question Pattern							
		[Maximum Time 2 Hours, Maximum Marks 70]							
		-	Part A	Part B	Part C				
		Module	2 Marks	6Marks	10 Marks	Total			
		Ι	2	2	1	5			
		II	2	2	2	6			
		III	2	2	1	5			
		IV	2	2	2	6			
		Total no of questions	8	8	6	22			

Number of questions to be answered	5	5	3	13
Total Marks	10	30	30	70

TEXT BOOKS:

- 1. Bartle, Robert G., Sherbert, Donald R. *Introduction to Real Analysis* (4thEdition), Wiley Internationals, 2000.
- 2. Brown, James Ward., Churchil, Ruel V. *Complex Variables and Applications* (8th *Edition*), McGraw- Hill Publications, 2009

SUGGESTED READINGS:

- 1. Denlinger, Charles. *Elements of real analysis*. Jones & Bartlett Learning, 2011.
- 2. Abbott, Stephen. Understanding analysis. springer publication, 2015.
- 3. Ghorpade, Sudhir R., and Balmohan Vishnu Limaye. *A course in calculus and real analysis*. New York: Springer, 2006.
- 4. Kumar, Ajit, Kumaresan, S. A basic course in real analysis. CRC press, 2014.
- 5. Ponnusamy, S., Herb Silverman. *Complex variables with applications*. Springer Science & Business Media, 2007.
- 6. Krantz, Steven G. Complex Variables: a physical approach with applications and MATLAB. CRC Press, 2007.
- 7. Kasana, Harvir Singh. *Complex variables: theory and applications*. PHI Learning Pvt. Ltd., 2005.
- 8. Zill, Dennis G., and Patrick D. Shanahan. *Complex analysis: A first course with applications*. Jones & Bartlett Publishers, 2013.
- 9. Choudhary, B. The elements of complex analysis. New Age International, 1993.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.A/B.Sc/B.Com (Honours)						
Course Name	Mathematical Tools for Physical Sciences						
Type of Course	Discipline Specific Course (DSC B/C)						
Course Code	MCE4DSCMAT202						
Course Level	200-299						
Course Summary	This Mathematics minor course complements and enhances the undergraduate programmes on science disciplines such as Physics, Chemistry etc., by enabling the students to understand the concepts of complex numbers and analytic functions; to solve differential equations of different types; to identify different conic sections and its applications in possible areas and to determine unit tangent vector, principal normal vector, and curvature of different curves.						
Semester	4	Credits 4					
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours	
		3	0	1	U	75	
Pre- requisites, if any	Basic awareness of coor integrals	dinate syst	ems, vecto	rs, functions	, derivatives,	and	

CO No.	Expected Course Outcome	Learning Domains *	PO No			
Upon the completion of the course, student will be able to:						
1	Distinguish between cartesian and polar co- ordinates and find the curvature and directional derivatives of curves.	К	1, 2, 3, 4, 10			

2	Evaluate Fourier series of different periodic functions in various Scientific problems.	E	1, 2, 3			
3	Analyse the nature of differential equations.	An	1			
4	Understand and apply Laplace transform, inverse Laplace transform and to solve ODE.	U	2			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C),						

Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.			
		Vector Calculus					
	1.1	Polar coordinates		1			
	1.2	Curves in Space and tangents, Velocity and Acceleration, Arc length in space	20	1			
1	1.3	Curvature and Normal vectors of a curve		1			
	1.4	Directional derivatives and gradient vectors		1			
		Text 1: Chapter 11 – sections: 11.3 Chapter 13 – Sections: 13.1,13.3,13.4 Chapter 14 – Section: 14.5 Theorems – Statements Only					
		Fourier Series					
2	2.1	Fourier series		2			
2	2.2	Functions of any period p=2L		2			
	2.3	Even and odd functions and half range expansions		2			

		Problems from section 2.2 and 2.3 (Practicum)	15		
		Text 2 : Chapter 10 - Section	s: 10.2 to	10.4	
		Differential Equations			
	3.1	Introductory Remarks, Nature of solutions		3	
_	3.2	Separable Equations	15	3	
3	3.3	First Order Linear Equations		3	
	3.4	Exact Equations		3	
	Text 3: Chapter 1 – Sections: 1.1 to 1.5				
		Laplace Transforms			
	4.1	Laplace Transform, Inverse Transforms, Linearity, Shifting.		4	
	4.2	Transforms of Derivatives and Integrals, Differential equations.		4	
4	4.3	Unit Step functions. Second shifting theorem, Dirac's delta function	25	4	
+	4.4	Differentiation and integration of transforms,		4	
	4.5	Convolution, integral equations	1450	4	
		Problems from section 4.2 a	and 4.5 (P	racticum)
		Text 2 : Chapter 5 [Sections	5.1 to 5.5]	
		Proof of theorems excluded			
5		Teacher Specific C	Content		

(This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned) **This content will be evaluated internally**

Teaching and		Classroom Pr	insaction)					
Learning Approach	I	Direct Instruction, Brainstorming Lecture, Explicit Teaching, Active Co- operative Learning.						
		MOI	DE OF ASS	SESSMENT				
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks						
		Сотро	nents		Mark Di	stribution		
		Module '	Test -1		5 N	Iarks		
		Module '	Test -2		5 N	Iarks		
		Module '	Test -3		5 Marks			
		Module Test -4			5 Marks			
		Assignment/ Seminar			5 Marks			
		Quiz/Viva			5 Marks			
		Total			30 Marks			
Assessment	В	End Semester Evaluation (ESE) 70 marks						
Types								
		[Maximum T	rs, Maximui	num Marks 70]				
			Part A	Part B	Part C			
		Module	2 Marks	6 Marks	10 Marks	Total		
		Ι	2	2	1	5		
		II	2	2	2	6		
		III	2	2	1	5		
		IV	2	2	2	6		
		Total no of questions	8	8	6	22		
		Number of questions to be answered	5	5	3	13		
		Total Marks	10	30	30	70		

TEXT BOOKS:

- 4. Thomas, George B Jr. Thomas' Calculus, Twelfth Edition, Pearson, 2010
- 5. Kreyszig, Erwin. Advanced Engineering Mathematics, Wiley student edition, 8th edition, 2006.
- Simmons, G.F., Krantz, S.G. *Differential Equations*, Tata McGraw Hill-New Delhi, 2007.

SUGGESTED READINGS:

- 8. Spivak, Michael. Calculus and Applications. 11th ed. Pearson, 2023
- 9. Stewart, James. Calculus: Early Transcendentals. 10th ed. Cengage Learning, 2023.
- 10. Thompson, Silvanus P. Calculus Made Easy. 5th ed. Dover Publications, 2014.
- 11. Joel L. Schiff. The Laplace Transform-Theory and Applications. Springer 1999.
- Rajendra Bhatia. Fourier Series (2nd ed.) Texts and Readings in Mathematics. Hindustan Book Agency, Delhi 2003.
- 13. Siddiqi, A.H., Manchanada, P. A first course in Differential Equations, Mc Millan.
- Grewal, B. S., *Higher Engineering Mathematics*, 44th Edition, Khanna Publishers, 2021.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.A./B.Sc./ B. Com(Honours)					
Course Name	Applied Mathe	matics in (Quantitativ	ve Analysis		
Type of Course	Discipline Spec	ific Course	e (DSC B/C	C)		
Course Code	MCE4DSCMA	T203				
Course Level	200-299					
Course Summary	This course condifferentiation, functions. The mathematical to	ntains diffe and an intr expertise o ools in vari	rence equat roduction to f this cours ous real life	tions, integration o quasi-concave a e will enable the e problems.	a, application and quasi- students t	ons of convex o apply the
Semester	4	Credits			4	Total
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours
Details	Approach	3	0	1	0	75
Pre- requisites, if any	Basic differentiation, Partial differentiation					

CO No.	Expected Course Outcome	Learning Domains *	PO No				
Upon the completion of the course, student will be able to:							
1	Find the extreme value of two variable functions	S	1,2,8,10				
2	Find the integral of various types of functions and apply it in various problems	А	1,2,3				
3	apply the quasi concavity and quasi convexity	Α	1,3,8,10				
4	apply the difference equation technique	А	1,2,8				
*Remen	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill						

(S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Modul e	Units	Course description	Hrs	CO No.				
	1.1	The differential version of optimal condition		1				
	1.2	Extreme value of a function of two variables		1				
1	1.3	Quadratic forms - An excursion		1				
1	1.4	Objective functions with more than two variables		1				
		Practicum: Exercise 11.2,11.3,11.4		1				
		Text 1: Chapter 11 - (exclude <i>n</i> variable case) 11	Text 1: Chapter 11 - (exclude <i>n</i> variable case) 11.1-11.4					
	2.1	Indefinite integral		2				
	2.2	Definite integral		2				
	2.3	Improper integrals	15	2				
2	2.4	Some economic applications of integrals		2				
		Practicum: Problems		2				
		Text 1 section 14.1-14.5						
	3.1	Effects of a constraint		3				
	3.2	Finding the stationary values (exclude <i>n</i> variable case and multi constraint case)		3				
3	3.3	Second order condition (exclude <i>n</i> variable case and multi constraint case)	20	3				
	3.4	Quasi concavity and Quasi convexity, Utility maximization and consumer demand (first order condition only)		3				
		Practicum: Exercise 12.2, Exercise 12.4 and 12.5						
		Text 1: Chapter 12- Sections12.1-12.5						

	4.1 Discrete time differences and difference equations			4		
	4.2	.2 Solving a first order difference equation				
4	4.3 The dynamic stability of Equilibrium		20	4		
	4.4The cobweb model, the market model with inventory			4		
		Text 1: Chapter 17 - Sections: 17.1 to 17.5.				
	Teacher S	pecific Contents				
5	(This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned) This content will be evaluated internally					

Teaching and Learning Approach	Classroom Procedure (Mode of transaction) Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion						
		MOI	DE OF ASS	SESSMENT			
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks					
		Compo	nents		Mark Di	stribution	
		Module '	Test -1		5 N	larks	
		Module '	Test -2		5 N	larks	
		Module Test -3		5 N	Iarks		
		Module Test -4		5 Marks			
		Assignment/ Seminar		5 Marks			
		Quiz/Viva		5 Marks			
Assessment		Total		30 Marks			
Types	B	End Semester Evaluation (ESE) 70 marks					
		Question Pattern					
		[Maximum Time 2 Hours, Maximum Marks 70]					
			Part A	Part B	Part C		
		Module	2 Marks	6 Marks	10 Marks	Total	
		Ι	2	2	1	5	
		II	2	2	2	6	
		III	2	2	1	5	
		IV	2	2	2	6	
		Total no of questions	8	8	6	22	

Number of questions to be answered	5	5	3	13
Total Marks	10	30	30	70

TEXT BOOK :

Chiang, C., Fundamental Methods of Mathematical Economics, McGraw Hills, (Latest Edition). **SUGGESTED READINGS:**

1. Carl P. Simon and Lawrence, Mathematics for Economists, Blume Viva Books, 2018

2. Knut Sydsaeter, Peter Hammond Prof. Arne Strom, Essential Mathematics for Economic Analysis (4th Edition), Pearson Publication, 2012.

3. Budnick, Frank, Applied Mathematics for Business, Economics and Social Sciences, McGraw Hills Education, 2017.

4. Dowling E. T., Mathematics for economists, Schum Series (latest edition)

5. Rosser, Mike, Basic Mathematics for Economists, Routledge, Taylor & Francis Group, 2003.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme **B.Sc. Mathematics Honours** Course **The Share Market Basics** Name Type of **Discipline Specific Elective – DSE** Course Course MCE4DSEMAT200 Code Course 200-299 Level This course is designed for beginners with little to no knowledge of the stock market. It will equip you with the fundamental understanding to navigate the financial world and Course make informed investment decisions. This course is intended for informational Summary purposes only and does not constitute financial advice. Semester 4 Credits 4 Total Hours Practical/ Tutorial Others Lecture Course Practicum Learning Approach Details 4 0 0 0 60 Pre-12th level Mathematics requisites, if any

CO No.	Expected Course Outcome	Learning Domains *	PO No					
Upor	Upon the completion of the course, student will be able to:							
1	Evaluate the market efficiency	E	1,2,3,5,6,7,8,9,10					
2	invest in share market by attaining the skill on behavioural finance	S	1,2,3,5,6,7,8,9,10					
3	Understand the concept beta	U	1,2,3,5,6,7,8,9,10v					
4	Skill fully analyse the market	S	1,2,3,5,6,7,8,9,10					
*Ren	nember (K), Understand (U), Apply (A), Analyse (An), I	Evaluate (E), C	Create (C), Skill					

(S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.				
1	1.1	Introduction to market Efficiency, Foundations of market efficiency, Forms of market efficiency,		1				
	1.2	why would a market be efficient, Some implications of market efficiency	13	1				
	1.3	Informed traders and insider trading	1	1				
	1.4		1					
	1.5	Anomalies, Bubbles and crashes		1				
	Text 1: Cha	apter 7 - Sections: 7.1 to 7.11	L					
2	2.1		2					
	2.2		2					
	2.3	Sentiment-based risk and limits to arbitrage						
	2.4		2					
	Text 1: Chapter 8 - Sections: 8.1 to 8.6							
	3.1	Announcements surprises and expected returns risk: systematic and unsystematic		3				
3	3.2	Diversification, systematic risk and unsystematic risk, systematic risk and beta	17	3				
	3.3	The security market line, more on beta		3				
	3.4	Extending CAPM		3				
	Text 1: Chapter 12							
<u> </u>	4.1	Performance evaluation,		5				
	4.2	comparing performance measures		5				
4	4.3	Investment risk management	17	6				
	4.4	More on computing value at risk		6				
	Text 1: Chapter 13							

	Teacher Specific Contents (This can be either classroom teaching,
5	practical session, field visit etc. as specified by the teacher concerned) This
	content will be evaluated internally

Teaching	Classroom Procedure (Mode of transaction)							
and Learning Approach]	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion						
		MODE OF ASSESSMENT						
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks						
		Сотро	nents		Mark Di	Mark Distribution		
		Module	Test -1		5 N	Iarks		
		Module	Test -2		5 N	Iarks		
		Module '	Test -3		5 N	Iarks		
		Module Test -4			5 N	Iarks		
		Assignment	5 Marks					
		Quiz/Viva			5 Marks			
		Total			30 Marks			
Assessment	B	End Semester Evaluation (ESE) 70 marks						
Types		Question Pattern						
		[Maximum Time 2 Hours, Maximum Marks)]		
			Part A	Part B	Part C			
		Module	2 Marks	6Marks	10 Marks	Total		
		Ι	2	2	1	5		
		II	2	2	2	6		
		III	2	2	1	5		
		IV	2	2	2	6		
		Total no of questions	8	8	6	22		
		Number of questions to be answered	5	5	3	13		
		Total Marks	10	30	30	70		

TEXT BOOK:

Bradford D Jordan Thomas r Jr, Fundamentals of Investment Valuation and Management, fifth edition,

SUGGESTED READINGS:

- 1. David G. Luenberger. Investment Science, Oxford University Press, Delhi, 1998.
- 2. John C. Hull. Options, Futures and Other Derivatives (6th Edition), Prentice-Hall India, Indian reprint, 2006.
- *3.* Sheldon Ross. An Elementary Introduction to Mathematical Finance (2nd Edition), Cambridge University Press, USA, 2003.
- 4. Kevin J Hastings. Introduction to Financial Mathematics, CRC Press, 2015.
- 5. Robert Buchanan. An Undergraduate Introduction to Financial Mathematics.
- 6. Lerner and Zima. Business Mathematics (Schaum's Outline Series).
- 7. Brealy and Myers. Corporate Finance, Mc Graw Hill, 2023.
- 8. Sharpe, N.J. and Bailey Upper Saddler. River. Investment Prentice Hall, 1999.
- 9. Bodie, Kane and Marcus. Investments, McGraw-Hill Irwin, 2005.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mathematics Honours						
Course Name	Mathematical Modelling						
Type of Course	Discipline Specific Elective – DSE						
Course Code	MCE4DSEMAT201						
Course Level	200-299						
Course Summary	Mathematical modelling is a process that uses math concepts to explain systems, functions and events. Nearly any industry can benefit from mathematical modelling, but it's most commonly used in areas such as engineering, computer science, social science and natural science. Mathematical modelling is described as conversion activity of a real problem in a mathematical form. Modelling involves to formulate the real- life situations or to convert the problems in mathematical explanations to a real or believable situation						
Semester	4	Credits			4	Total Llaura	
Course Details	Learning Approach	Lectur e	Tutorial	Practical/ Practicu m	Others		
		4	0	0	0	4	
Pre- requisites, if any	Basic Calculus and	Differen	tial Equa	ations			

CO No.	Expected Course Outcome	Learning Domains *	PO No			
Upon the completion of the course, student will be able to:						
1	Get an insight into different Mathematical techniques that are applied in real life.	U	1, 2, 10			
2	Understand the use of First Order Differential equation to create mathematical models of real life.	U	1, 2, 3, 6			

3	Solve Mathematical Modelling of geometrical problems using first order differential equation. Solve Mathematical Modelling of population problems using first order differential equation.	Α	1,2,3,10			
4	Use Second Order Differential equation to create mathematical models of real life. Solve Mathematical Modelling of trajectory related problems using second order differential equation	U, A	2,3,6,10			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
1	1.1	Simple Situations Requiring Mathematical Modelling		1
	1.2	The technique of Mathematical Modelling		1
	1.3	Classification of Mathematical Models	13	1
	1.4	Some Characteristics of Mathematical Models		1
	1.5	Modelling through 1.5 Geometry,Algebra, Trigonometry, Calculus		1
		Text 1: Chapter 1 - Sections:	1.1 to 1.8	
	2.1	Modelling through Differential Equations		2
2	2.2	Linear Growth and Decay Models		2
	2.3	Non-linear Growth and Decay Models	17	2
	2.4	Compartment Models		2

	2.5	Mathematical Modelling in Dynamics through Ordinary Differential Equations of the first order.		3			
		Text 1: Chapter 2 -Sections: 2.1 to 2.5					
	3.1	Mathematical Modelling inPopulation Dynamics			3		
3	3.2	Mathematical Modelling in Epidemics			3		
	3.3	Compartment Models 15			3		
	3.4	Economics Related Models		3			
		Text 1: Chapter 3 - Sections:	3.1 to	3.4			
	4.1	Mathematical Modelling of Planetary Motion		4			
4	4.2	Mathematical Modelling of Circular motion and Motion of Satellites		4			
	4.3	Mathematical Modelling through Linear Differential Equations of Second Order15		4			
	4.4	Miscellaneous Problems		4			
		1 ext 1: Chapter 4 - Sections	: 4.1 t	0 4.4.			

5	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned</i>) This content will be evaluated internally	

Teaching	Classroom Procedure (Mode of transaction)
and Learning Approach	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion
Assessment Types	MODE OF ASSESSMENT

	A	Continuous Com	orehensive A	Assessment	(CCA) 30 N	Marks
-		Components			Mark Distribution	
		Module	5 N	5 Marks		
		Module Test -2			5 N	Iarks
		Module	Test -3		5 N	Iarks
		Module	Test -4		5 N	Iarks
		Assignment	/ Seminar		5 N	Iarks
		Quiz/	Viva		5 N	Iarks
		Tot	al		30 N	Marks
	B	End Seme	ster Evalua	tion (ESE)	70 marks	
			Question	Pattern		
		[Maximum T	'ime 2 Hour	rs, Maximur	n Marks 7()]
	ĺ		Part A	Part B	Part C	-
		Module	2 Marks	6 Marks	10 Marks	Total
		Ι	2	2	1	5
		II	2	2	2	6
		III	2	2	1	5
		IV	2	2	2	6
		Total no of questions88		6	22	
		Number of questions to be answered	5	5	3	13
		Total Marks	10	30	30	70

Text Book:

Kapur, J. N. Mathematical Modelling 2nd Edition New Age International Private Limited, 2021.

Suggested Readings:

- 1. Edward A Bender. *An Introduction to Mathematical Modelling, 1st edition*, Dover Publications Inc, 2003.
- 2. Rutherford Aris. *Mathematical Modelling Techniques, new edition*, Dover Publications Inc, 2003.
- 3. Seyed M. Moghadas., Majid Jaberi Douraki. *Mathematical Modelling: A Graduate Textbook, first edition,* Jon Wiley and Sons Inc, 2019.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mathematics Honours						
Course Name	Transforms and Fourier Series						
Type of Course	Discipline S	Discipline Specific Elective – DSE					
Course Code	MCE4DSEM	AT202					
Course Level	200-299	200-299					
Course Summary	The content of the course has wide application in the fields such as application of PDE, Digital Signal Processing, Image Processing, Theory of wave equations, Differential Equations and many others. The aim of the course is to familiarise the students various tools and techniques related to Laplace transform and Fourier series. Also to equip them to solve applied problems.						
Semester	4	Credits			4		
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours/week	
	Approacn	4	0	0	0	60	
Pre- requisites, If any							

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		
1	Understand and apply Laplace transform, inverse Laplace transform and to solve ODE	U, A	1,2,3,10
2	Apply various operations on Laplace transforms	А	2,3
3	Solve problems using Fourier series	Е	1,2,10

4 Evaluate Fourier sine and cosine transforms in various Scientific problems	1 E	1,2,3,6
--	-----	---------

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
1	1.1	Laplace Transform, Inverse Transforms, Linearity, Shifting.	1	
	1.2TransformsofDerivativesandIntegrals, Differential equations.		1	15
	1.3	Unit Step functions. Second shifting theorem, Dirac's delta function	1	
	Text	1: Chapter 5 - Sections: 5.1 to 5.3		
	2.1	Differentiation and integration of transforms,	2	
2	2.2 Convolution, integral equations		2	15
2	2.3	Partial fractions, Differential Equations	2	
	Text 1: Chapter 5 - Sections: 5.4 to 5.6			
	3.1	Fourier series	3	
3	3.2	Functions of any period p=2L 3		15
	3.3	Even and odd functions and half range expansions	3	

	Text 1: Chapter 10 - Sections: 10.2 to 10.4				
	4.1	Fourier sine and cosine transforms,	4 15		
4	4.2 Fourier transform, Tables of transform		4		
	Text 1: Chapter 10 - Sections: 10.9 to 10.11				
5	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned</i>) This content will be evaluated internally				

Teaching	ing Classroom Procedure (Mode of transaction)					
Learning Approach	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion					
	MODE OF ASSESSMENT					
	A Continuous Comprehensive Assessment (CCA) 30 Marks					
		Compo	nents		Mark Di	stribution
		Module	Test -1		5 N	Iarks
		Module Test -2		5 Marks		
		Module Test -3		5 Marks		
		Module Test -4			5 Marks	
		Assignment/ Seminar Quiz/Viva Total			5 Marks	
Assessment Types					5 Marks	
JI = 10					30 Marks	
	B	B End Semester Evaluation (ESE) 70 marks				
		Question Pattern				
		[Maximum Time 2 Hours, Maximum Marks 70]				
		Module	Part A	Part B	Part C	
			2 Marks	6 Marks	10 Marks	Total
		Ι	2	2	1	5
		II	2	2	2	6
		III	2	2	1	5
		IV	2	2	2	6
--	--	---------------------------------------	----	----	----	----
		Total no of questions	8	8	6	22
		Number of questions to be answered	5	5	3	13
		Total Marks	10	30	30	70

1. Kreyszig, Erwin. Advanced Engineering Mathematics, Wiley student edition, 8th edition, 2006.

SUGGESTED READINGS:

- 1. Lokenath Debnath, Dambaru Bhatta . *Integral Transforms and Their Applications (3rd ed.)*. CRC Press Taylor & Francis Group, 2015.
- 2. Baidyanath Patra. *An Introduction to Integral Transforms*. CRC Press, 2018, Ist Edition.
- 3. Joel L. Schiff. The Laplace Transform-Theory and Applications. Springer 1999.
- 4. Rajendra Bhatia. Fourier Series (2nd ed.) Texts and Readings in Mathematics. Hindustan Book Agency, Delhi 2003.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mathematics					
Course Name	Operations Research					
Type of Course	Discipline Specific El	ective – l	DSE			
Course Code	MCE4DSEMAT203					
Course Level	200-299					
Course Summary	The objective of this course is to familiarize industrial problems to students with various methods of solving Linear Programming Problems, Transportation Problems, Assignment Problems and their applications					
Semester	4	Credits 4				
Course Details	Learning Approach	Lecture	Tutorial	Practicum	Others	Total Hours
	Learning Approach	4	0	0	0	60
Pre- requisites, If any						

CO No:	Expected Course Outcome	Learning Domains	PO No:				
Upon	Upon the successful completion of the course, the student will be able to						
1	Express objective function and resource constraints in LP model in terms of decision variables and parameters. Solve an LP problem by the graphical method.	U,A	1,2,3				
2	Interpret the optimal solution of LP problems.Formulate the dual LP problem and understand the relationship between primal and dual LP problems.	A,U	1, 2,6,10				
3	Recognize, formulate, and solve a transportation problem involving a large number of shipping routes.	С	1,2,3,6,10				

4 Analyse assignment problem and apply the Hungarian method to solve an assignment problem.	С	1,2,3
---	---	-------

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Modul	eUnit	sCourse Description	CO No:	Hours				
	1.1	Linear Programming: Introduction, Formulation of LPP (Example up to 2.6.10)						
	1.2	.2 Graphical Method of Solution (Example up to 2.9.8)		12				
1	1.3	.3 a) Some Exceptional Cases		14				
	1.4 The General LPP, Canonical and Standard Forms of LPP							
	Text	1: Chapter 2 - Sections: 2.1, 2.6, 2.9 to 2.12		_				
	2.1	Simplex Method: Theory of Simplex Method, Some Important Definitions	2					
	2.2	The Simplex Method (Example up to 2.16.4)						
2	2.3	Artificial Variable Techniques: Big-M Method only (Example up to 2.17.4)	2	18				
	2.4	Special Cases in Simplex Method Application	2					
	2.5	2.5 Duality in Linear Programming						
	Text 1: Chapter 2 - Sections: 2.13, 2.14, 2.16, 2.17, 2.18.1 to 2.18.6; Chapter 6- Sections: 6.1.1 to 6.1.3(problems, theorems without proof)							
	3.1	Transportation Problem: Introduction to the Model, Assumptions in the Transportation Model, Definitions of the Transportation Model, Matrix Terminology	3	16				
3	3.2	Formulation and Solution of Transportation Model	3	10				
	3.3	3.3 Variants in Transportation Problem						

	4 1	 Assignment Problem: Definition of the Assignment Model, Mathematical Representation of Assignment Model, Comparison with the Transportation 					
	4.1						
	4.2	4.2 Solution of the Assignment Model					
4	4.3	Hungarian Method for Solution of the Assignment Problems		14			
-	4.4	Formulation and Solution of the Assignment Model	4				
	4.5	4.5 Variation of Assignment Problem: Non-square Matrix and Maximization Problem					
	Text	Text 1: Chapter 4 - Sections: 4.1 to 4.7					
5	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, field etc. as specified by the teacher concerned</i>) This content will be evaluated internally						

Teaching and		Classroom Procedure (Mode of transaction)						
Learning	Ι	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment,						
Approach		Library V	Work and G	roup Discuss	sion			
		MODE OF ASSESSMENT						
	Α	Continuous Comp	orehensive .	Assessment	(CCA) 30 N	Aarks		
		Compo	nents		Mark Di	stribution		
		Module '	Test -1		5 N	Iarks		
		Module '	Test -2		5 N	Iarks		
		Module Test -3				Iarks		
		Module Test -4			5 Marks			
		Assignment/ Seminar				Iarks		
Assessment Types	Quiz/Viva				5 Marks			
		Total				Marks		
	B	B End Semester Evaluation (ESE) 70 marks						
		Question Pattern						
		[Maximum T	'ime 2 Houi	rs, Maximur	n Marks 7()]		
	ŀ		Part A	Part B	Part C	-		
		Module	2 Marks	6 Marks	10 Marks	Total		
		Ι	2	2	1	5		
		II	2	2	2	6		
		III	2	2	1	5		

	IV	2	2	2	6
	Total no of questions	8	8	6	22
	Number of questions to be answered	5	5	3	13
	Total Marks	10	30	30	70

1. Prem Kumar Gupta., Hira, D.S. *Operations Research* – 7th *Edition*, S Chand & Sons Publications, 2014.

SUGGESTED READINGS:

- 1. Sharma, J.K. Operations Research: Theory and Applications -6^{th} edition, Macmillian India Ltd-New Delhi Publications
- 2. Frederick S. Hillier., Gerald J Lieberman. *Introduction to Operations Research* – 10th edition. McGraw Hill Publications.
- 3. Taha, Hamdy A. *Operations Research: An Introduction* 8th edition. Pearson Education Publishers.
- 4. Kanti Swarup., Gupta, P.K., Man Mohan. *Operation Research*. S Chand & Sons Publications
- 5. Aumann R.J. *Mixed and Behaviour strategies in infinite extensive*. Princeton University.

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	B.Sc. Mathematics Honours					
Course Name	Business Mathematics					
Type of Course	Value Addition (Course- VA	NC			
Course Code	MCE4VACMAT2	00				
Course Level	200-299					
Course Summary	This course provides a solid foundation in mathematical concepts relevant to business applications. The inclusion of practical lab sessions using Excel enhances the understanding of these concepts through hands-on experience and real-world problem-solving. Students will gain proficiency in applying mathematical tools to analyse economic scenarios, make informed decisions, and solve business-related problems.					
Semester	4	Credits			3	Total Hours /
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Week
Details		3	0	0	0	45
Pre- requisites, if any	Elementary Arithr	netic				

CO No.	Expected Course Outcome	Learning Domains *	PO No					
Upon	Upon the successful completion of the course, student will be able to:							
1	Perform various matrix operations.	А	2					
2	Formulate real life problems into matrices and solve them.	С	1,6					

3	Sketch graphs of linear equations and solve simultaneous equations using graphical methods.	A	2			
4	Formulate and solve system of linear equations from real life problems.	С	2,6			
5	Apply excel spreadsheet functions to perform matrix operations and to solve simultaneous equations and linear programming problems.	A, S	3,6,10			
6	Learn Freehand Method, Semi-average method, Moving average method & Method of Least squares to analyse underlying causes of trends or systematic patterns over time.	An, A	1,2,3,6,10			
*Rem (S), In	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Course Description	CO No.	Hrs
		Matrix Algebra		
	1.1	Introduction to matrices and vectors	1	
1	1.2	Basic principles of matrix multiplication, Matrix multiplication – the general case (using excel)	1,5	
	1.3The matrix inverse and the solution of simultaneous equations		1,2	
	1.4	Determinants (using excel)	1,5	18
	1.5	Minors, cofactors and the Laplace expansion	1	
	1.6The transpose matrix, the cofactor matrix, the adjoint and the matrix inverse formula (Exclude the derivation of the matrix-inverse formula)1.7Application of the matrix inverse to the solution of linear simultaneous equations (using excel)		1	
			2,5	

	1.8	Cramer's rule	2		
	1.9	Input- Output Analysis	2	_	
	Text 1	: Chapter 15 - Sections 15.1 to 15.9 & 15.12		L	
		Linear Programming Problems			
	2.1	Linear Equations: Straight line graphs, An Economic Application- Supply and Demand	3		
	2.2	Simultaneous Equations	3	15	
2	2.3	Linear Inequalities: Inequalities & Economic Applications	3		
	2.4	Linear Programming - Formulation and Graphic Solution (using excel)	4,5		
	Text 2 Equati Sectio	: Chapter 1 – Sections: 1.1, 1.2, 1.3(Excluding Complication) ions in Three Unknowns and Gaussian Elimination); Chap ins: 2.1 & 2.2 Text3: Chapter 2 (excluding section 2.5)	ons, Thr oter 2 –	ee	
		Interpolation and Time Series Analysis			
	3.1	Time Series, Necessity of time series analysis	6		
3	3.2	Components of time series, Some adjustments of time series data	6	_ 12	
	3.3	.3 Measurement of trend: Freehand Method, Semi-average .3 method, Moving average method, Method of Least squares. (Linear Trend only)		_	
	Text 4	Chapter 18 - Sections 18.1 to 18.8	I		
4	Teach sessio evalua	er Specific Contents(This can be either classroom teaching, n, field visit etc. as specified by the teacher concerned)This c nted internally	practica ontent v	/ vill be	

Approach	Verbal Exposition						
	Ca	Case Studies: Applying matrix algebra to business scenarios.					
	In-(In-Class Demonstrations: Visualizing matrix operations in action.					
	Think-Pair-Share Activities: Encouraging peer collaboration in understanding concepts.						
	Flipped Classroom Approach: Pre-learning materials before class discussions.						
	Scenario-based Learning: Learning through hypothetical business scenarios. Online Quizzes and Exercises: Reinforcing learning through practice.						
	Cc inte	ncept Mapping Exercises errelated concepts.	: Creating vi	sual repres	entations of		
	МС	DE OF ASSESSMENT					
		Continuous Comprehensive Assessment (CCA) 25 marks					
		Components			Mark Distril	bution	
		Components			Mark Distril	bution	
	Α	Components Module Test-	- I		Mark Distril	bution 5 Marks	
	А	Components Module Test- Module Test	- I st- II		Mark Distril	5 Marks 5 Marks	
	А	Components Module Test- Module Test- Module Test-	- I st- II st- III		Mark Distril	5 Marks 5 Marks 5 Marks	
Assessment Types	А	Components Module Test- Module Test Module Test Assignment	- I st- II st- III t/Seminar		Mark Distril	5 Marks 5 Marks 5 Marks 5 Marks 5 Marks	
Assessment Types	A	Components Module Test- Module Test Module Test Assignment Quiz/Viva	- I st- II st- III t/Seminar voce		Mark Distril	5 Marks 5 Marks 5 Marks 5 Marks 5 Marks 5 Marks	
Assessment Types	A	Components Module Test- Module Test Module Test Assignment Quiz/Viva v End Ser	- I st- II st- III t/Seminar voce nester Exa l	mination(W	Mark Distril	5 Marks 5 Marks 5 Marks 5 Marks 5 Marks 5 Marks	
Assessment Types	A	Components Module Test- Module Test- Module Test- Module Test- Module Test- Module Test- Module Test- Module Test- End Ser Question Pattern [Maxi 50]	- I st- II st- III t/Seminar voce mester Exa t	mination(W 90 Minutes	Mark Distril	5 Marks 5 Marks 5 Marks 5 Marks 5 Marks Marks	
Assessment Types	A	Components Module Test- Module Test- Module Test Module Test Assignment Quiz/Viva v End Ser Question Pattern [Maxi 50]	- I st- II st- III t/Seminar voce mester Exa mum Time Part A	mination(W 90 Minutes	Mark Distril	5 Marks 5 Marks 5 Marks 5 Marks 5 Marks Marks	
Assessment Types	В	Components Module Test- Module Test- Module Test Module Test Assignment Quiz/Viva v End Ser Question Pattern [Maxi 50] Module	- I st- II st- III t/Seminar voce nester Exa mum Time Part A 2 Marks	mination(W 90 Minutes Part B 5 Marks	Mark Distril	bution 5 Marks 5 Marks 5 Marks 5 Marks 5 Marks Marks Marks	
Assessment Types	В	Components Module Test- Module Test- Module Test- Module Test- Assignment Quiz/Viva v End Ser Question Pattern [Maxi 50] Module	- I st- II st- III t/Seminar voce nester Exa mum Time Part A 2 Marks 3	mination(W 90 Minutes Part B 5 Marks 2	Mark Distril	bution 5 Marks 5 Marks 5 Marks 5 Marks 5 Marks Marks Total 6	

111	2	2	1	5
Total no of questions	8	6	4	18
Number of questions to be answered	5	4	2	11
Total Marks	10	20	20	50

- 1. Rosser, Mike, and Piotr Lis. *Basic mathematics for economists*. 3rd ed. Routledge, 2016.
- 2. Pemberton, Malcolm, and Nicholas Rau. *Mathematics for economists: an introductory textbook*,4th ed. Manchester University Press, 2016.
- 3. ND, Vohra. "Quantitative techniques in management.", 3rd ed. Tata McGraw Hill New Delhi, 2007.
- 4. Ghosh, Ram Krishna, and Suranjan Saha. *Business Mathematics and Statistics, (Algebra, Geometry, and Business Statistics)*. New Central Book Agency, 2019.

SUGGESTED READINGS:

- 1. Mavron, Vassilis C., and Timothy N. Phillips. *Elements of Mathematics for Economics and Finance*. Classroom Companion: Economics. Springer Cham, 2023.
- Newbold, Paul, et al. Statistics for Business and Economics. Pearson Education Limited, 2023

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mathematics Honours							
Course Name	Document prepa	Document preparation using LaTeX						
Type of Course	Skill Enhanceme	Skill Enhancement Course (SEC)						
Course Code	MCE4SECMAT20	MCE4SECMAT200						
Course Level	200-299	200-299						
Course Summary	This course introduces students to the LaTeX typesetting system, a powerful tool for document preparation widely used in academia and industry. Building on basic LaTeX concepts, students will learn advanced techniques for creating professional-quality documents, including complex formatting, mathematical typesetting, and bibliography management.							
Semester	4	Credits			3	Total		
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours		
Details	Арргоаст	3	0	0	0	45		
Pre- requisites, if any								

CO No.	Expected Course Outcome	Learning Domains *	PO No					
Upon t	Upon the successful completion of the course, student will be able to:							
1	Explain the fundamental principles of LaTeX typesetting	U, S	1,2					
2	Apply advanced LaTeX formatting techniques to create professional-quality documents	A, S	1,2,3					
3	Analyse and troubleshoot common errors in LaTeX documents	A, S	2,3,4					
4	Create and customize bibliographies using BibTeX in LaTeX	C, S	1,2,3,4					
5	Demonstrate effective collaboration using LaTeX for group writing projects	A, S	3,4,9,10					
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)								

COURSE CONTENT Content for Classroom transaction (Units)

Module	Units	Course Description	CO No.	Hrs
1	1.1	Preparing the input file	1	
	1.2	Sentences and paragraphs, the document, sectioning, displayed material	1	
	1.3	1.3 Running LaTeX		18
	1.3	Changing the type style	2	
	1.4	Mathematical Formulas: common structures, Mathematical symbols, Arrays, Delimiters, Multiline formulas, Putting one thing above another, spacing and changing style in math mode.	2	
	Text 1:	Chapter 2 – Sections: 2.1 to 2.3; Chapter 3 – Sections: 3.1	& 3.3	•

Module	Units	Course Description	CO No.	Hrs				
	2.1	2.1 Defining commands and environments		12				
2	2.2	Figures and other floating bodies: Figures and Tables	2	12				
	Text 1: Chapter 3 – Sections: 3.4 & 3.5.1							
	3.1	Cross references	3					
	3.2	Bibliography and citation	4	15				
3	3.3	Books	2					
	3.4	Slides: Slides and overlays	5					
	Text 1:	Chapter 4 – Sections: 4.2 & 4.3; Chapter 5 – Sections: 5.1	& 5.2.1					
4	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned</i>) This content will be evaluated internally							

Teaching		Classroom Procedure (Mode of transaction)				
and Learning Approach	Interactive Instructions using ICT tools, Hands on Training					
		MODE OF ASSESSMENT				
Assessment Types		Practical sessions or exams may be organised for each module and the CCA should be based on these hands on experiences.One of the following Activity should be done during the course. Textbook Content Preparation: As part of CCA student must submit a document of at least 3 pages using a mathematics reference texts of students or faculties choice. This document must be considered for CCA				
	Α	Continuous Comprehensive Assessment (CCA) 25 Marks				
		Components	Mark Distribution			
		Module Test -1	5 Marks			

	Module	5 Marks			
	Module	Module Test -3			
	Assignmen	5 Marks			
	Quiz/	5 N	Iarks		
	Tot	al		25 N	Marks
В	End Seme	ster Evalua	ation (ESE)	50 marks	
	Question Pattern [Maximum Time 75Minutes, Maximum Marks 50]				
		Part A	Part B	Part C	
	Module	2 Marks	5 Marks	10 Marks	Total
	Ι	3	2	2	7
	II	3	2	1	6
	III	2	2	1	5
	Total no of questions	8	6	4	18
	Number of questions to be answered	5	4	2	11
	Total Marks	10	20	20	50

- 1. Lamport, Leslie. LaTeX: *A Document Preparation System*, Addison-Wesley, 2 nd edition, 1994. **SUGGESTED READINGS:**
- 1. Goossens, M., Mittelbach, F. F., Samarin, a. *The LaTeX Companion*, AddisonWesley, 1993.
- 2. Krishnan, E. LATEX Tutorials: A Primer, Indian TEX Users Group, 2004.

R REVISIANTIN	MAHARAJA'S COLLEGE, ERNAKULAM(Government Autonomous)					
Programme	B. Sc. Mathemati	B. Sc. Mathematics Honours				
Course Name	INTERNSHIP					
Type of Course	INT					
Course Code	MCE4INTMAT200					
Semester		Credits	2			

A. Internship Guidelines

- Students can earn a maximum of 2 credits (4th Semester)
- This internship programme enables students to gain practical experience and academic research skills, preparing them for careers in the mathematics field or further studies.
- > Duration: 60 Hours, between the fourth and fifth semesters.
- TheDepartmentshallapprovetheinstitutionwhereeverystudentisplanningf orinternship. Internal mentors shall be assigned to the students for necessary guidance.
- Thenatureoftheworkshalldependonthetypeoforganisationselected.Onlin e internship can be permitted depending on the nature of the work. The internship shall be 60 to 120 hours duration after the fourth semester.
- The student shall prepare a Work Record and submit the same to the department periodically as decided by the internal mentor. At the end of the Internship tenure, an Internship Report shall also be submitted.

B. Objectives

- Provide practical experience.
- Enhance skills in experimental techniques, data analysis, and scientific communication.
- ➤ Gain practical knowledge.
- Establish connections in the industry or research sector / educational sector.

Foster collaboration between academic institutions and industry/research organizations.

C. Evaluation of Internship : Total 50 Marks

The evaluation of internship shall be done by a committee constituted by the Department Council. The scheme of CCA and ESE is given below :

Components of Evaluation of Internship	Weightage	Marks for Internship 2 Credits/ 50 Marks		
CCA	30%	15		
ESE	70 %	35		

ContinuousComprehensiveAssessment-15marks

CCAshallbebasedontheWorkRecord.Itshallbeevaluatedby theinternalmentor& the Head of the Department.

- 1. Feedback from the hosting organization (5 marks).
- 2. Supervisor/Internal Mentor feedback (10 marks).

FortheEndSemesterEvaluation-35 marks

- 1. Presentation (15 marks).
- 2. Internship report (10 marks).
- 3. Viva Voce (10 marks).

Theevaluationofthereportandpresentation/vivashallbedonebyaBoardofIntern alExaminers as decided in the Department Council.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mathematics Hor	ours				
Course Name	A Voyage Into Complex	Analysis				
Type of Course	Discipline Specific Cour	se (DSC A	7)			
Course Code	MCE5DSCMAT300					
Course Level	300-399					
Course Summary	The objective of this course is the introduction of basic concepts of complex analysis through a problem oriented approach. The course is designed for an understanding of elementary contour integrals, which serves as a powerful means to compute definite integrals and analyze the behaviour of complex functions. The Cauchy-Goursat theorem and Cauchy's integral formula which leads to the construction of Taylor series and Laurent series, the power series expansions that capture the intricate behaviour of analytic functions around specific points are analyzed through the course. The concepts of singularities, poles and residues along with their evaluation are introduced. Improper integrals, definite integrals with one or both limits of integration infinite, are being evaluated using the Cauchy's					
Semester	5	Credits 4 Total				Total
Course	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours
Details		3	0	2	0	75
Pre- requisites, if any	Complex numbers and o functions of complex var	perations, riables, Ele	Regions of ementary fu	complex pla nctions of co	ne, Basic pro omplex variat	perties of bles.

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon th	e completion of the course, student will be able to:		
1	Understand elementary contour integrals and their upper bounds and acquire a thorough knowledge of contour integration methods.	U	1,2
2	Demonstrate a comprehensive understanding of the complex plane's domains, singular points, and their classifications including isolated, removable and essential singularities.	U	1,2,3,10

3	Apply Cauchy - Goursat theorem, Cauchy's integral formula, and Cauchy's residue theorem to calculate contour integrals, showcasing expertise in complex integration techniques.	А	1,2,10	
4	Elaborate on the consequences of Cauchy's integral formula, highlighting its significance in complex analysis and its applications to derivative calculations.	An	1,2,3	
5	Effectively categorize poles and zeros of analytic functions, demonstrating a clear understanding of their roles in function behaviour and singularities.	An	1,2	
6	Construct series expansions for analytic functions using appropriate techniques, demonstrating proficiency in representing complex functions using power series.	С	1,2,10	
7	Evaluate improper integrals using the residue theorem, showcasing the versatility of complex integration methods in solving problems involving improper integrals.	Е	1,2,3,10	
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)				

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
1		Integration of Complex Functions	22	
	1.1 Definite integrals of functions			1
	1.2Contours and contour integrals, Some examples, Upper bounds for moduli of contour integrals			1
	1.3Anti derivatives, Cauchy-Goursat Theorem (statement only), Some consequences of the extension			3
	1.4Simply and multiply connected domains1.5Cauchy's integral formula, An extension of Cauchy's integral formula1.6Liouville's theorem and Fundamental theorem of algebra, Maximum modulus principle.			2
				3
				4
		Problems (Practicum)		1,3,4
	Text 1: Sections	s: 38 to 41, 43, 44, 46, 48 to 54		
2		Series of Complex Functions	15	

	2.1	Convergence of sequences and series		6			
	2.2	Taylor series, Proof of Taylor's Theorem, Examples		6			
	2.3	Laurent Series, Examples		6			
		Problems (Practicum)		6			
	Text 1: Sections	: 55 to 60 & 62					
3		Residues and Poles	18				
	3.1	Isolated singular points, residues, Cauchy's Residue Theorem		2			
	3.2	Three types of isolated singular points, Residues at poles, examples.		2			
	3.3	Zeros of analytic functions, Zeros and poles		5			
		Problems (Practicum)		2,5			
	Text 1: Sections: 68 to 70, 72 to 76						
4		Evaluation of Improper Integrals	20				
	4.1	Evaluation of improper integrals, Example		7			
	4.2	Improper integrals from Fourier analysis. Jordan's Lemma (statement only)		7			
	4.3	Definite integrals involving sines and cosines		7			
		Problems (Practicum)		7			
	Text 1: Sections: 78 to 81 & 85						

5	Teacher Specific Content	
	Teacher Specific Contents (This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned)	
	This content will be evaluated internally	

Teaching		Classroom Procedure (Mode of tra	ansaction)				
and	1. I	. Lecture methods					
l oprning	2. I	Problem solving Methodologies					
Approach	3. 4	Activity based Tutorials/ Practical					
Арргоасп	4. 5	4. Software based visualisation of concepts					
Assessment		MODE OF ASSESSMENT					
Types	(CCA) 30 Marks						
		Components	Mark Distribution				

	Module	Test -1		5 Marks	
	Module	Module Test -2 Module Test -3			
	Module	5 N	5 Marks		
	Module Test -4			5 N	Iarks
	Assignment/ Seminar			5 N	Iarks
	Quiz/	Viva		5 N	Iarks
	Tot	Total		30 N	Marks
В	End Seme	End Semester Evaluation (ESE) 70 m			
	[Maximum T	ime 2 Hour	rs, Maximur	n Marks 70)]
	[Maximum 1	ime 2 Hour	rs, Maximur Dort D	n Marks 7()]
	Module	ModulePart APart B2 Marks6 Marks		10 Marks	Total
	Ι	2	2	1	5
	II	2	2	2	6
	III	2	2	1	5
	IV	2	2	2	6
	Total no of questions	8	8	6	22
	Number of questions to be answered	5	5	3	13
	Total Marks	10	30	30	70

1. Brown, James Ward, Ruel V. Churchill. *Complex variables and Applications (8th edition)*. McGraw-Hill, 2009.

SUGGESTED READINGS:

1. Saff, E. B., Snider A. D., *Fundamentals of Complex Analysis with Applications to Engineering, Science and Mathematics*. Pearson, 2002.

2. Ponnusamy, S., Herb Silverman. *Complex variables with applications*. Springer Science & Business Media, 2007.

3. Krantz, Steven G. Complex Variables: A physical approach with applications and MATLAB. CRC Press, 2007.

4. Kasana, Harvir Singh. Complex variables: theory and applications. PHI Learning Pvt. Ltd., 2005.

5. Zill, Dennis G., Patrick D. Shanahan. *Complex analysis: A first course with applications*. Jones & Bartlett Publishers, 2013.

6. Choudhary, B. The elements of complex analysis. New Age International, 1993.

7. Jeffrey, Alan. Complex analysis and applications. CRC Press, 2005.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mathematics Honours						
Course Name	Towards Mathematica	l Precisio	n: Limits A	and Converg	gence		
Type of Course	Discipline Specific Cou	rse (DSC .	A)				
Course Code	MCE5DSCMAT301						
Course Level	300-399	300-399					
Course Summary	This course offers a robust foundation in the analysis of sequences, series and the concept of limits of functions and thereby develops acomprehensive understanding of the mathematical structures crucial tocalculus. Topics include limits of sequences, monotone sequences, sub sequences, proper divergence, Cauchy sequences, and infinite series with a focus on convergence criteria, comparison tests, and specialattention to tests like Root and Ratio, Raabe's, Alternating Series, Dirichlet and Abel test. The course also discusses the limit concepts of functions. By course end, students						
Semester	5	Credits			4	Total Hours	
Course	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others		
Details	3 11 3	4		0		60	
Pre- requisites, if any	Fundamental of real ana	lysis.					

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon th	e completion of the course, student will be able to:		
1	Analyze convergence methods for sequences to determine limits. Investigate and analyze the properties and behavior of monotone sequences.	A, An	1, 2, 3,10
2	Understand and analyze subsequences, demonstrating proficiency in their properties. Analyze and apply Cauchy sequences, focusing on their convergence properties.	A, An	1, 2, 3, 10
3	Understand infinite series, apply convergence/divergence tests, develop concepts of absolute convergence, and use specific tests for non-absolute convergence.	A,C, U	1, 2, 3,10
4	Develop and apply theories to determine limits of functions at specific points and understand their properties.	A, C, U	1,2,3,10

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description	CO No.	Hrs	
	1.1	Sequences and Their Limits	1		
1	1.2	Limit Theorems	1	15	
1	1.3	Monotone Sequences	1		
	Text 1: Chapter statements only)	3 - Sections: 3.1, 3.2 (Theorems 3.2.3 and 3 , 3.3 (up to 3.3.3)	.2.11 –		
	2.1	Sub sequences and the Bolzano- Weierstrass Theorem	2		
2	2.2	The Cauchy Criterion .	2	15	
	2.3	Properly Divergent Sequences	2		
	Text 1: Chapter 3 - Sections: 3.4 (Theorems 3.4.11 and 3.4.12 – statements only), 3.5 (up to 3.5.8, Theorem 3.5.8 – statement only) & 3.6.				
	3.1 Infinite Series- nth term test, comparison test, limit comparison test.		3		
	3.2	3			
3	3.3 Tests for Absolute Convergence: Limit comparison Test II, The Root and Ratio Test (Concepts and Problems only)		3		
	3.4	The Raabe's Test (Concepts and Problems only)	3	15	
	3.5	Test for Non absolute Convergence: Alternating Series Test, The Dirichlet and Abel test. (Concepts and Problems only	3		
	Text 1: Chapter 3 - Sections: 3.7; Chapter 9 - Sections: 9.1 (Theorem 9.1.5 – statement only), 9.2.1 to 9.2.5, 9.2.8 to 9.2.10 & 9.3 (Concepts, statements of the theorems and problems only from sections 9.2 and 9.3)				
	4.1	Limits of Functions	4	15	
4	4.2	Limit Theorems	4		
	4.3	Some Extensions of the Limit Concept	4		

	statements of the theorems and				
	problems only)				
	Teacher Specific Contents (<i>This can be either classroom teaching, practical session,</i>				
5	field visit etc. as specified by the teacher concerned) This cont	ent will be a	evaluated		
-	internally				

Teaching Classroom Procedure (Mode of					ction)		
and Learning Approach							
			MODE OF AS	SESSMENT			
	Α	Continuous Comprehensive Assessment (CCA) 30					
			Component	ivial KS	Mark Distribution		
			Module Test	-1	5 N	larks	
			Module Test	-2	5 N	Iarks	
			Module Test	-3	5 N	Iarks	
			Module Test	-4	5 N	Iarks	
		Assignment/ Seminar			5 N	larks	
		Quiz/Viva			5 Marks		
		Total			30 Marks		
	В	End Semester Evaluation (ESE) 70 marks					
Assessment		Question Pattern					
Types		[Maximum Time 2 Hours, Maximum Marks 70]					
		Modulo	Part A	Part B	Part C		
		Module	2 Marks	6Marks	10 Marks	1 otai	
		Ι	2	2	1	5	
		II	2	2	2	6	
		III	2	2	1	5	
		IV	2	2	2	6	
		Total no of questions	8	8	6	22	
		Number of questions to be answered	5	5	3	13	
		Total Marks	10	30	30	70	

1. Robert G Bartle., Donald R Sherbert. *Introduction to Real Analysis* (4thEdition), Wiley Internationals, 2000

SUGGESTED READINGS:

1. Denlinger, Charles. *Elements of real analysis*. Jones & Bartlett Learning, 2011.

2. Howie, John M. Real analysis. Springer Science & Business Media, 2006.

3. Abbott, Stephen. Understanding analysis. springer publication, 2015.

4. Ghorpade, Sudhir R., Balmohan Vishnu Limaye. *A course in calculus and real analysis*. New York: Springer, 2006.

5. Kumar, Ajit, Kumaresan, S. A basic course in real analysis. CRC press, 2014.

ADVANCED READINGS:

1. Gelbaum, Bernard R., and John MH Olmsted. *Counterexamples in analysis*. Courier Corporation, 2003.

2. Rudin, Walter. *Principles of mathematical analysis*. Vol. 3. New York: McGraw-hill, 1976.

3. Apostol, Tom M. Mathematical analysis. 1974.

4. Royden, Halsey Lawrence, and Patrick Fitzpatrick. *Real analysis*. Vol. 2. New York: Macmillan, 1968.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mathematics Honours						
Course Name	Fundamentals of Grou	Fundamentals of Groups and Rings					
Type of Course	Discipline Specific C	Course (E	DSC A)				
Course Code	MCE5DSCMAT302						
Course Level	300-399						
Course Summary	The objective of the course is to introduce group and ring theory for a beginner. The basic algebraic structure group, its subgroups, cyclic groups, permutations, cosets, homomorphisms, and normal subgroups are covered in the first three modules. Rings and Fields are introduced in the fourth module.						
Semester	5	Credits			4	Total Hours /	
Course	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Week	
Details	U 11	3	0	1	0	75	
Pre- requisites, if any	Basic Set Theory and M	lathematic	al Operatio	ons			

CO No.	Expected Course Outcome	Learning Domains *	PO No			
Upon the completion of the course, student will be able to:						
1	Comprehend binary operations, isomorphic structures, groups, and subgroups.	U	1,2,3,4,5			
2	Analyse cyclic groups and permutation groups and apply these concepts to solve problems in group theory.	А	1,2,3,4,5			

3	Use cosets to prove Lagrange's theorem, analyse homomorphisms, and understand Cayley's Theorem.	An	1,2,3,4,5			
4	Analyse rings, fields, and integral domains, and thus become adept in algebraic structures.	An	1,2,3,4,5			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.					
	1.1	Binary Operations – Definitions and Examples		1					
	1.2	Groups – Definition, Examples		1					
1	1.3	Groups - Elementary Properties	20	1					
	1.4	Group Isomorphism, Group Tables and Examples of Abelian Groups		1					
		Practicum Problems from sections 2 and 3							
		Text 1: Chapter 1 – Sections: 1.1 to 1.30; Chapter 2 – Sections: 2.23; Chapter 3 – Sections: 3.1 to 3.5	Yext 1: Chapter 1 – Sections: 1.1 to 1.30; Chapter 2 – Sections: 2.1 to .23; Chapter 3 – Sections: 3.1 to 3.5						
	2.1	Examples of non-abelian groups and Permutation Group		2					
	2.2	Symmetric Groups and Disjoint Cycles		2					
	2.3	Subgroups, Cyclic Groups and Cyclic Subgroups	20	2					
2		Practicum Problems from sections 4, 5							
		Text 1: Chapter 4 – Sections: 4.1 to 4.16; Chapter 5 – Sections: 5.26; Chapter 6 – Sections: 6.1 to 6.21	5.1 to						
	3.1	Generating Sets		3					
	3.2	Group Homomorphism and Group of Permutation	20	3					
	3.3	Kernel, Cayley's Theorem, Even and Odd Permutation	20	3					
3	3.4	Cosets and Theorem of Lagrange		3					
		Text 1: Chapter 7 – Sections: 7.1 to 7.6; Chapter 8 – Sections: 8. 8.25;Chapter 10 – Sections: 10.1 to 10.20	.1 to						
	4.1	Rings and Fields		4					
	4.2	Integral Domain, Characteristic of a Ring	15	4					
	4.3	Field of Quotients of an Integral Domain (Statement only)		4					
4		Text 1: Chapter 22 – Sections: 22.1to 22.18; Chapter 23 – Sectio 23.14; Chapter 26 Examples: 26.1 & 26.6 (Theorem 26.6-Statem	ons: 23 ient on	.1 to ly)					

5	Teacher Specif session, field vis evaluated inter	ic Content(This can be either classroom teaching, practical it etc. as specified by the teacher concerned) This content will be nally
---	---	---

Teaching		Classroom Pr	ocedure (l	Mode of tra	nsaction)			
and Learning Approach	Leo	Lectures, Tutorials, Interactive Sessions, Blended Learning						
		MOI	DE OF ASS	SESSMENT				
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks						
		Сотро	nents		Mark Di	stribution		
		Module	Test -1		5 N	Iarks		
		Module	Test -2		5 N	Iarks		
		Module	Test -3		5 N	Iarks		
		Module Test -4			5 N	Iarks		
		Assignment/ Seminar			5 Marks			
		Quiz/Viva			5 Marks			
		Total			30 N	Marks		
Assessment	В	End Semes	ster Evalua	ation (ESE)	E) 70 marks			
Types			Question	Pattern				
		[Maximum Time 2 Hours, Maximum Marks 70]						
			Part A	Part B	Part C			
		Module	2 Marks	6 Marks	10 Marks	Total		
		Ι	2	2	1	5		
		II	2	2	2	6		
		III	2	2	1	5		
		IV	2	2	2	6		
		Total no of questions	8	8	6	22		
		Number of questions to be answered	5	5	3	13		
		Total Marks	10	30	30	70		

TEXT BOOKS:

1. Fraleigh, John B.;. Brand, Neal E, A First Course in Abstract Algebra 8th

ed, Pearson Education 2021.

SUGGESTED READINGS:

- 1. Dummit, David S., and Richard M. Foote. Abstract Algebra. 3rd ed. Wiley, 2003.
- 2. Artin, M. Algebra. 2nd ed., Pearson Education 2017
- 3. Herstein, I. N. Topics in Algebra, 2ndEdition, John Wiley and sons, 2010
- 4. Musili, C. *Rings and Modules 2nd* revised *Edition, Narosa 1997*

ADVANCED READINGS:

- 1. Hungerford, Thomas.W., Algebra, 4th Print 2003 Edition.
- 2. Lang, Serge, Algebra, 4th Print 2005 Edition

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B. Sc. Mathematics Honours						
Course Name	Differential Equations and Applications						
Type of Course	iscipline Specific Course (DSC A)						
Course Code	MCE5DSCMAT303						
Course Level	300-399						
Course Summary	The course covers basics o solving them and also includ	The course covers basics of ordinary and partial differential equations, various methods for solving them and also include some practical applications.					
Semester	5	Credits 4				Total Hours	
Course Details	Learning Approach	Lecture	Tutorial	Practicum	Others		
		4	0	0	0	60	
Pre-requisites, if any	Basic knowledge of functions, differentiation and integration. Basic understanding of ordinary and partial differential equations, including degree and order. Knowledge in constructing ordinary differential equations. Basic understanding of the concept of solutions.				ling of dge in ot of		

CO No.	Expected Course Outcome	Learning Domains *	PO No					
Upon the completion of the course, student will be able to:								
1	Develop the idea of solving first order Differential Equations	А	1, 2					
2	Apply first order Differential Equations to practical situations and solve	A, An	1, 2, 3					
3	Solve higher order Differential Equations	А	1, 2					
4	Develop the concept of Partial Differential Equations and solve	U, A	1, 2					
*Rememi Evaluate	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)							

Module	Units	Course Description	CO No:	Hours
1	1.1	Exact Differential Equations and Integrating Factors	1	15
	1.2	Separable Equations and Equations Reducible to this form	1	
	1.3	Linear Equations	1	
	1.4	Bernoulli Equations	1	
	Text 1: Ch	apter 2 – Sections: 2.1 (Theorem 2.1 statement only	y), 2.2 & 2.3	
2	2.1	Finding Integrating Factors	2	10
	2.2	A Special Transformation	2	-
	2.3	Orthogonal Trajectories	2	
	2.4	Geometric Applications	2	
	Text 1: Ch Chapter 12	apter 2 – Sections: 2.4 A & 2.4 B; Chapter 3 – sect 2 - section 12.2	ion: 3.1 A,Te	xt 2:
3	3.1	Definition and Basic Existence Theorem	3	25
	3.2	The Homogeneous Equation	3	
	3.3	Reduction of Order	3	
	3.4	The Non-Homogeneous Equation	3	
	3.5	The Homogeneous Linear Equation with Constant Coefficients	3	
	3.6	The Method of Undetermined Coefficients	3]
	3.7	Variation of Parameters	3	
	Text 1: Ch	apter 4 – Sections: 4.1 A, 4.1 B, 4.1 C, 4.1 D, 4.2, 4.	3, 4.4	

4	4.1	$\frac{dx}{P} = \frac{dy}{Q} = \frac{dz}{R}$ Methods of solution of $\frac{dx}{P} = \frac{dy}{Q}$	4	10
	4.2	Partial Differential Equations, Origin of First Order Partial Differential Equations	4	
	4.3	Linear Equations of First Order Partial Differential Equations	4	
	Text 3: Ch only)	apter 1 – Section: 3; Chapter 2 - sections-1,2,4 (The	eorem 2 &3 s	statement

5	Teacher Specific Contents (<i>This can be either classroom teaching</i> ,
	practical session, field visit etc. as specified by the teacher
	concerned)This content will be evaluated internally

Teaching and		Classroom 1	Procedure (M	lode of transo	action)			
Learning	Direct Instruction: Explicit Teaching, Lecture. Interactive Instruction: Active Co-							
Approach		operative Learning, Group Assignments						
		МО	DE OF ASS	ESSMENT				
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks						
		Сотро	nents		Mark Di	istribution		
		Module	Test -1		5 N	Iarks		
		Module	Test -2		5 N	Iarks		
		Module	Test -3		5 N	Iarks		
		Module	Test -4		5 N	Iarks		
		Assignment/ Seminar			5 N	Iarks		
		Quiz/Viva			5 Marks			
		Total			30 Marks			
Assessment	В	End Semester Evaluation (ESE) 70 marks						
Types			Question	Pattern				
		[Maximum]	Time 2 Houi	•s. Maximum	Marks 701			
			Part A	Part B	Part C			
		Module	2 Marks	6 Marks	10 Marks	Total		
		Ι	2	2	1	5		
		II	2	2	2	6		
		III	2	2	1	5		
		IV	2	2	2	6		
		Total no of questions	8	8	6	22		
		Number of questions to be answered	5	5	3	13		
		Total Marks	10	30	30	70		

- 1. Ross, Shepley L. *Differential Equations*. 3rd ed. Wiley. 2013.
- 2. Grewal, B. S.. *Higher Engineering Mathematics*. 42nd ed. Khanna Publications. 2012.
- Sneddon, Ian N.. Elements of Partial Differential Equations. 1st ed. McGraw-Hill. 1957.

SUGGESTED READINGS:

- Simmons, George F., Steven G Krantz.. Differential Equations Theory, Technique, and Practice. 1st ed. McGraw-Hill (Walter Rudin Student Series). 2007
- Amaranath,T.. An Elementary Course in Partial Differential Equations, 2nd ed. Jones and Bartlett. 2009

ADVANCED READING:

1.Simmons, George F.. *Differential Equations with Applications and Historical Notes.* 3rd ed. CRC Press, Taylor & Francis. 2016

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mathematics Hor	nours						
Course Name	Numerical methods							
Type of Course	Discipline Specific Elective – DSE							
Course Code	MCE5DSEMAT300							
Course Level	300-399							
Course Summary	Calculation of error and approximation is a necessity in all real life, industrial and scientific computing. The objective of this course is to acquaint students with various numerical methods of finding solution of different type of problems, which arises in different branches of science such as locating roots of equations, finding solution of systems of linear equations and differential equations, interpolation, differentiation, evaluating integration.							
Semester	5	Credits 4				Tatal		
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicu m	Others	Hours		
		4	0	0	0	60		
Pre- requisites, if any								

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon t	he completion of the course, student will be able to:		
1	Find the consequences of finite precision and the inherent limits of numerical methods	E	1, 2
2	Find appropriate numerical methods to solve algebraic and transcendental equations.	Е	1, 2, 3
3	Use numerical methods to find missing values of data.	Α	1,2,3,6

4	Apply numerical methods to solve real life problems	С	1, 2, 3,10				
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)							

COURSE CONTENT

Module	Units	its Course description		Hrs)).	
	1.1	Numerical Analysis: Mathematical Preliminaries, Errors and Their Computations.			1		
1	1.2 Introduction, Bisection Method, Method of False Position. 15		15		2,3	3	
	1.3	Iteration Method, Newton - Raphson Method		-		2,3	
		Text 1: Chapter 1 - Sections: 1.2 to 1.3; Chapter 2 – Sections: 2.1 to 2.5.					
	2.1	Interpolation: Finite Differences, Differences of a polynomial.			4		
2	2.2	Newton's Formulae for Interpolation.			3,4		
	2.3	2.3 Central Difference: Gauss's Central difference formulae.		1 5			
		Text 1: Chapter 3 - Sections: 3.3,3.5,3.6 & 3.7.1					
	3.1	Interpolation with Unevenly Spaced Points: Lagrange's Interpolation Formula.				3,	4
3	3.2	3.2 Divided Differences and Their Properties.		15		3,	4
	3.3	3.3 Inverse Interpolation.		15		3,4	ł
	Text 1- Chapter 3 - Sections:3.9.1, 3.10 & 3.11						
4	4.1	4.1 Numerical differentiation and Integration: Numerical differentiation, Errors in Numerical Differentiation. 15		1,3		3	
	4.2	Differentiation Formulae with Function Values.			2,4		

	4.3	Numerical integration: Trapezoidal Rule, Simpson's 1/3- rule, Simpson's 3/8- rule.		4	
		Text 1- Chapter 6 - Sections: 6.2.1,6.2.3, 6.4.1 to 6.4.3			
5	Teacher Specific Contents: This content will be evaluated internally				

Teaching	Classroom Procedure (Mode of transaction)						
and Learning Approach	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion						
	MODE OF ASSESSMENT						
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks					
		Components			Mark Distribution		
		Module	Test -1		5 Marks		
		Module	Test -2		5 N	Iarks	
		Module Test -3			5 N	Iarks	
		Module Test -4			5 N	Iarks	
		Assignment/ Seminar			5 Marks		
		Quiz/Viva			5 Marks		
		Total			30 Marks		
Assessment	В	End Semester Evaluation (ESE) 70 marks					
Types			Question	Pattern			
		[Maximum T	'ime 2 Houi	rs, Maximur	n Marks 7()]	
		Module	Part A	Part B	Part C		
			2 Marks	6 Marks	10 Marks	Total	
		Ι	2	2	1	5	
		II	2	2	2	6	
		III	2	2	1	5	
		IV	2	2	2	6	
		Total no of questions	8	8	6	22	
		Number of questions to be answered	5	5	3	13	
		Total Marks	10	30	30	70	

1. Sastry, S. S. Introductory methods of Numerical Analysis,5th edition, PHI Learning Private Limited, 2013.

Suggested Readings

- 1. Chapra, Steven C. Applied Numerical Methods with MATLAB for Engineers and Scientists (4th ed.). McGraw-Hill Education, 2018.
- 2. Fausett, Laurene V. *Applied Numerical Analysis Using MATLAB*. Pearson. India, 2009.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mather	natics Hor	ours			
Course Name	Exploring the	Exploring the Harmony of Automata				
Type of Course	Discipline Specific Elective – DSE					
Course Code	MCE5DSEMA	MCE5DSEMAT301				
Course Level	300-399					
Course Summary	The principles acquired in Automata Theory lay a robust groundwork, imparting the skills to effectively address real-life challenges by cultivating the ability to formulate mathematical models for problem- solving. Additionally, this knowledge serves as a springboard for advanced studies in theoretical computer science, algorithm design, and related disciplines.					
Semester	5	Credits			4	
Course Details	Learning Approach	Lecture	Tutorial	Practicum	Others	Total Hours
Pre- requisites, If any		+	0	0		00

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		
1	To provide Basic Grounding in Discrete Mathematics	U	1,2
2	To Connect Regular Expression, languages and Automata.	А	2,3,10
3	To develop the skills to categorise the different types of mathematical models of computation.	S	2,3,4
4	To handle real-life problems and develop the skill of solving problems through the application of mathematical models and algorithms.	Ι	2,4,6

CO No:	Expected Course Outcome	Learning Domains	PO No:			
	Upon the successful completion of the course, the student will be able to					
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours			
	1.1	Automata, Computability and Complexity.	1				
	1.2	Mathematical Notations and Terminology- Sets, Sequences and Tuples	1	12			
1	1.3	e) Relations, Functions and Graphs.	1				
	1.4	f) Strings, Languages, Boolean Logic.	1				
	Text 1: Sec	tions: 0-0.1 & 0.2.					
	2.1	Regular Languages: Finite Automata	2				
	2.2	Non-Determinism		18			
2	2.3	Regular Expressions	2				
	2.4	Non-Regular Languages	2				
	Text 1: Sections: 1.1 to 1.4						
	3.1	Context Free Languages: Context Free Grammars	3				
3	3.2	Pushdown Automata	3	15			
	3.3	Non-Context free Languages	3				
	Text 1: Sec	tions: 2.1 to 2.3					
4	4.1	Church Turing Thesis: Turing Machine	4	15			
	4.2	4.2 Variants Of Turing Machine		1			

	4.3		Enumerators			4		
	4.4		Equivalence with Other Models			4		
	Text 1	: Sec	ctions: 3.1 & 3.2				•	
5	5 Teacher Specific Contents. This content will be evaluated internally							
Teachin Learn Appro	ng and ning pach		Classroo	n Procedur	re (Mode of t	ransaction)		
		Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion					signment,	
Assess Typ	sment Des		Ν	NODE OF A	ASSESSME	NT		
		Α	Continuous C	Comprehens	sive Assessme	ent (CCA) 30	marks	
			Cor	nponents		Mark Dis	tribution	
			Module Test- I			5 marks		
			Module Test II			5 Marks		
			Module Test III			5 Marks		
			Module Test IV			5 Marks		
			Assignment/Seminar			5 ma	urks	
			Quiz/Viva voce			5 ma	urks	
		B	End	Semester	Examination	(Written)		
				Ques	tion Pattern			
			[Maximu	m Time 2 H	Iours, Maxir	num Marks 7	0] Tatal	
			Wodule	Part A	Part B	Part C	Total	
				2 Marks	6 Marks	10 Marks		
			Ι	2	2	1	5	
			П	2	2	2	6	
			III	2	2	1	5	
			IV	2	2	2	6	
			Total no of questions	8	8	6	22	
			Number of questions to be answered	5	5	3	13	
			Total Marks	10	30	30	70	

TEXT BOOKS:

1. Michael Sipser.. *Introduction to the Theory of Computation*. Thomson Publishing Co,3rd Edition, 2012.

SUGGESTED READINGS:

- 1. Hop Croft, J.E., Motwani, R., Ullman, J. D. *Introduction to Automata Theory, Languages and Computation*,3rd Edition Pearson, 2008.
- 2. Lewis, H. R., Papadimitriou, C. H. *Elements of the Theory of Computation*. 2nd Edition, Prentice Hall, 1998.
- 3. Kozen, C., Automata and Computability, Springer-Verlag, 1997

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mathematics Honours						
Course Name	Inventory Manage	ment and Si	mulation: Th	ne Basics of Bu	siness Succe	SS	
Type of Course	Discipline Specifi	Discipline Specific Elective – DSE					
Course Code	MCE5DSEMAT302	2					
Course Level	300-399						
Course Summary	The courseaimed at building valuable skills for streamlining business operations and ensuring customer satisfaction. The course will coverdifferent inventory control methods. The students will learn about different quality control techniques, how to implement them, and how they relate to inventory management.						
Semester	5	Credits			4	Total	
Course	Learning	Lecture	Tutorial	Practicum	Others	Hours	
Details	Approach	4	0	0	0	60	
Pre- requisites, if any	Basic Mathematics						

COURSE OUTCOMES (CO)

Co no.	Expected course outcome	Learning domains *	Po no				
Upon th	Upon the completion of the course, student will be able to:						
1	Identify various inventory problems and classify them	U	1,2,3,6,9,				
2	Analyse inventory management problems	А	1,2,3,6,9,10				
3	Understand simulation techniques	U	1,2,3,6,9,1				
4	Apply quality control techniques	А	1,2,3,6,9,1				
*remember (k), understand (u), apply (a), analyse (an), evaluate (e), create (c), skill (s), interest (i) and appreciation (ap)							

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
	1.1	Necessity for maintaining inventory		1
	1.2	inventory costs 1 Inventory control problem 1		1
1	1.3			1
	1.4	Classification of fixedorder quantity inventory models		1
	1.5	Inventory models withdeterministic demand		1
		Text 1: Chapter 12 - Sections: 12.1-12.5		·
	2.1	Inventory models with probabilistic demand	_	2
	2.2	Inventory models with a price break Multi item deterministic model		2
	2.3			2
2	2.4	Forecasting of demand, forecasting methods	13	
	2.5	When to order, Selective inventory management techniques, Periodic review system		2
		Text 1: Chapter 12 - Sections: 12.6-12.13		
2	3.1	Introduction, when to use simulation, what is the simulation	15	3
3	3.2	3.2 Advantages of simulation technique, limitations of the		3

		simulation technique		
	3.3		3	
	3.4 Generation of random numbers, simulation languages			3
		Text 1: Chapter 13		
	4.1	Definition, Objectives of quality control		4
	4.2	Steps in quality control problem, advantages of statistical quality control		4
4	4.3	Causes of variation in quality, Techniques of SQC, control charts, control charts for variables, control charts for attributes	17	4
	4.4	Inspection, objectives of inspection, types of inspection, product control, acceptance sampling, single sampling plan, OCC, Double sampling plan, Multiple sequential sampling		4
		Text 1: Chapter 9& 10		

	Teacher Specific Contents
5	(This can be either classroom teaching, practical session, field visit etc. as specified
5	by the teacher concerned)
	This content will be evaluated internally

Teaching	Classroom Procedure (Mode of transaction)						
and Learning Approach	L	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion					
		MODE OF ASSESSMENT					
	Α	Continuous Comprehensive Assessme	nt (CCA) 30 Marks				
		Components	Mark Distribution				
		Module Test -1	5 Marks				
		Module Test -2	5 Marks				
Assessment		Module Test -3	5 Marks				
Types		Module Test -4	5 Marks				
		Assignment/ Seminar	5 Marks				
		Quiz/Viva	5 Marks				
		Total	30 Marks				
	B	End Semester Evaluation (ESE)) 70 marks				
		Question Pattern					
		[Maximum Time 2 Hours, Maximu	m Marks 70]				
		Module Part A Part B	Part C Total				

	2 Marks	6Marks	10 Marks	
Ι	2	2	1	5
II	2	2	2	6
III	2	2	1	5
IV	2	2	2	6
Total no of questions	8	8	6	22
Number of questions to be answered	5	5	3	13
Total Marks	10	30	30	70

TEXTBOOK:

Gupta, Prem Kumar, and D. S. Hira. "Operations research, revised edition, S." *New Delhi: S Chand & Company* (2008).

Extra reading

1. Nicolas Vandeput, Inventory Optimization: Models and Simulations, Publisher: De Gruyter

- 2. Edward G. Schilling, Demystifying Quality Control by
- 3. Wayne L.Winston, Simulation Modeling and Analysis with Arena
- 4. Martin Christopher, Fundamentals of Inventory Management
- 5. William J. Kennedy, Quantitative Models for Inventory and Production Planning

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	B.Sc.Mathematics Honours							
Course Name	Introduction to Python for Mathematical Computation							
Type of Course	Skill Enhancement Course (SEC)							
Course Code	MCE5SECMAT300	MCE5SECMAT300						
Course Level	300-399							
Course Summary	This course provides the Computations, modelling students will gain profice mathematical Application	e skills to ng and pro ciency in u ons	utilize Pyt blem solvi sing Pythc	hon for Math ng, Through on Libraries f	nematical n a hands on for various	approach		
Semester	5	Credits			3	Total		
Course	Learning Approach	Lecture	Tutorial	Practicum	Others	Hours		
Details		3	0	0	0	45		
Pre- requisites, if any		·	·					

CO No.	Expected Course Outcome	Learning Domains *	PO No				
Upon the successful completion of the course, student will be able to:							
1	Discuss the basics of Python programming language.	U, S	1,2				

CO No.	Expected Course Outcome	Learning Domains *	PO No					
Upon th	Upon the successful completion of the course, student will be able to:							
2	Apply strings and lists, tuples, and packages for computation.	A, S	1,2,3,4					
3	Employ NumPy for efficient numerical and mathematical operations in Python.	A, S	1,2,3,10					
4	Sketch various types of plots (line plots, scatter plots, histograms) using Matplotlib.	A, S	1,2,9,10					
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)								

COURSE CONTENT

Module	Units	Course Description	CO No.	Hrs
1	1.1	Getting started with Python	1	
	1.2	Variables and Data Types	1	
	1.3	Operators and their Precedence	1	
	1.4	Python String	1	
	1.5	Python Lists		20
	1.6	Mutable and Immutable Types	1	
	1.7	Input from the Keyboard	1	
	1.8	Iteration: while and for loops	1	
	1.9	Conditional Execution: if, elif and else	1	

Module	Units	Course Description	CO No.	Hrs		
	1.10 Modify loops: break and continue		1			
	1.11	Functions	2			
	1.12	More on Strings and Lists	2			
	1.13	Python Modules and Packages	2			
	Text 1: Ch	napter 2 – Sections: 2.1 to 2.10 & 2.13 to 2.15				
	2.1	The NumPy Module -Creating Arrays and Matrices	3			
	2.2	Copying	3			
	2.3	Arithmetic Operations	3			
	2.4	Cross product	3			
2	2.5	Dot product	3	12		
	2.6	Saving and Restoring	3			
	2.7	Matrix inversion.	3			
	2.8	Vectorized Functions	3			
	Text 1: Chapter 3 – Sections: 3.1 & 3.2.					
2	3.1	The Matplotlib Module	4	12		
3	3.2	Plotting mathematical functions	4	13		

Module	Units	Course Description	CO No.	Hrs			
	3.3	Famous Curves	4				
	3.4	Power Series	4				
	3.5	Fourier Series	4				
	3.6	2D plot using colors	4				
	3.7	Fractals	4				
	3.8	Meshgrids	4				
	3.9	3D Plots	4				
	3.10	Mayavi, 3D visualization	4				
	Text 1: Ch	napter 4 – Sections: 4.1 to 4.10.					
4	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned</i>) This content will be evaluated internally						

Teaching and Learning Approach	` Int	Interactive instructions using ICT tools Hands on training			
	MODE OF ASSESSMENT				
Assessment Types	 Continuous Comprehensive Assessment (CCA)Practical sessions or exams may be organised for each module and the CCA should be based on these hands on experiences. 				
		Components	Mark Distribution		
		Teacher Specific Content	20 Marks		

Teaching and Learning Approach	Interactive instructions using ICT tools Hands on training						
		Assignment/Quiz	Assignment/Quiz 5 Marks				
	в	End Semester Examinati	End Semester Examination (Written)				
		Question Pattern [Maximum Time 90 Minutes, Maximum Marks 50]					
		Module	Part A	Part B	Part C	- Total	
			2 Marks	5 Marks	10 Marks		
		1	3	1	1	5	
		11	3	3	2	8	
		111	2	2	1	5	
		Total no of questions	8	6	4	18	
		Number of questions to be answered	5	4	2	11	
		Total Marks	10	20	20	50	

TEXT BOOK:

1. Ajith Kumar B P. Python for Education, Inter University Accelerator Centre - New Delhi ,2010.

SUGGESTED READINGS:

- 1. Eric Matthes. *Python Crash Course : A hands-on, project-based introduction to programming 3 rd edition*, no starch press, 2023.
- 2. Wes McKinney. Python for Data Analysis, O'Reilly Media, Inc., 2022.
- 3. Robert Johansson. *Numerical Python: A Practical Techniques Approach for Industry*, Apress, 2015.
- 4. Ben Root. Python Plotting with Matplotlib, Ben Root: Packt Publishing Ltd,. 2017.
- 5. *SymPy Documentation* (https://docs.sympy.org/latest/index.html) ,2003.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mathematics Honours								
Course Name	Mathematical Analysis	Mathematical Analysis							
Type of Course	Discipline Specific Course (DSC A)								
Course Code	MCE6DSCMAT300	MCE6DSCMAT300							
Course Level	300-399	300-399							
Course Summary	This real analysis course covers the fundamental concepts, includes continuity, uniform continuity, monotone and inverse functions, derivatives, the mean value theorem, L'Hôpital's Rules and Taylor's theorem. The course also explores the Riemann integral, Riemann integrable functions, and the Fundamental Theorem of Calculus. This curriculum provides students with a solid foundation in calculus and mathematical analysis assertial for advanced mathematical studies.								
Semester	6	Credits			4	Total Hours			
Course	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others				
Details	5 m	3		1		75			
Pre- requisites, if any	Limits and Convergence								

CO No.	Expected Course Outcome	Learning Domains *	PO No					
Upon	Upon the completion of the course, student will be able to:							
1	Comprehend the concept of continuous functions and demonstrate proficiency in understanding their properties.	A,U	1, 2, 3					
2	Understand uniform continuity, comparing and contrasting it with continuity.	U	1, 2, 3					
3	Comprehend the concept of differentiation	A,U	1, 2, 3, 10					
4	Develop comprehensive understanding of the Mean Value Theorem, L'Hôpital's Rules and Taylor's theorem.	A, U	1, 2, 3,10					
5	Understand the principles of Riemann integration, demonstrating proficiency in applying these concepts	An	1, 2, 3,10					
6	Comprehend Riemann integrable functions and the fundamental theorem of calculus.	U, An	1,2,3,10					

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description CO		Hrs		
	1.1	Continuous Functions	1	15		
	1.2	Combinations of Continuous Functions	1			
1	1.3	Continuous Functions on Intervals				
	Text 1: Chapter 5 - Sections: 5.1 (Concepts, statements of the theorems and problems only), 5.2 (Theorems 5.2.4 and 5.2.5 – statements only), 5.3(Theorems 5.3.4 and 5.3.5 – Statements only)					
	2.1	Uniform Continuity	2			
2	2.2	Monotone and Inverse Functions.	2	20		
	2.3	Problems (Practicum)				
	Text 1: Chapter 5 - Sections: 5.4 (up to 5.4.8) (Theorems 5.4.2 and 5.4.8 – Statements only), 5.6 (up to 5.6.5). (Theorems 5.6.4 and 5.6.5 – Statements only)					
	3.1	The Derivative	3			
	3.2	The Mean Value Theorem	4			
3	3.3	Intermediate Value Property of Derivatives	4			
	3.4	L'Hospital's Rules	4	20		
	3.5	Taylor's Theorem.	4			
		Problems (Practicum)	3,4			
	Text 1: Chapter 6 - Sections: 6.1(up to 6.1.7), 6.2.1 to 6.2.8, 6.2.11 to 6.2.13, 6.3(Theorems 6.3.3 and 6.3.5- statements only), 6.4.1 to 6.4.3 (Theorem 6.4.1- Statement only)					
	4.1	Riemann Integral	5			
4	4.2	Riemann Integrable Functions	6	20		
	4.3The Fundamental Theorem6		6			
		Problems (Practicum)	5,6			
		Text 1: Chapter 7 - Sections: 7.1, 7.2 (Theorem 7.2.9 – statement only) & 7.3(up to 7.3.9)				
5	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned</i>) This content will be evaluated internally					

PracticumPracticum is designed to provide supervised practical application
of theoretical knowledge and skills.It' s purpose is to encourage creativity and develop Problem
Solving Skills.The practicum component is to be done in the classroom under the
strict guidance of the teachers.A minimum of 30 problems is to be solved, and a handwritten
copy of the solutions should be kept in the department.

Teaching		Classroom Procedure (Mode of transaction)						
and Learning Approach		Lecturing						
		MODE OF ASSESSMENT						
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks						
		Compo	nents		Mark Di	stribution		
		Module	Test -1		5 N	Iarks		
		Module	Test -2		5 N	Iarks		
		Module	Test -3		5 N	Iarks		
		Module Test -4			5 Marks			
		Assignment/ Seminar			5 Marks			
		Quiz/Viva			5 Marks			
		Total			30 Marks			
Assessment	B	End Semes	ster Evalua	ation (ESE)	70 marks			
Types			Question	Pattern				
	[Maximum Time 2 Hours, Maximum Marks 70])]		
			Part A	Part B	Part C			
		Module	2 Marks	6Marks	10 Marks	Total		
		Ι	2	2	1	5		
		II	2	2	2	6		
		III	2	2	1	5		
		IV	2	2	2	6		
		Total no of questions	8	8	6	22		
		Number of questions to be answered	5	5	3	13		
		Total Marks	10	30	30	70		

TEXT BOOK:

1. Bartle, Robert G., Sherbert, Donald R. *Introduction to Real Analysis* (*4thEdition*), Wiley Internationals,2002.

SUGGESTED READINGS:

1. Denlinger, Charles. *Elements of real analysis*. Jones & Bartlett Learning, 2011.

2. Howie, John M. Real analysis. Springer Science & Business Media, 2006.

3. Abbott, Stephen. Understanding analysis. springer publication, 2015.

4. Ghorpade, Sudhir R., and Balmohan Vishnu Limaye. *A course in calculus and real analysis*. New York: Springer, 2006.

5. Kumar, Ajit, Kumaresan, S. A basic course in real analysis. CRC press, 2014.

ADVANCED READINGS:

1. Gelbaum, Bernard R., and John MH Olmsted. *Counterexamples in analysis*. Courier Corporation, 2003.

2. Rudin, Walter. *Principles of mathematical analysis*. Vol. 3. New York: McGraw-hill, 1976.

3. Apostol, Tom M. Mathematical analysis. 1974.

4. Royden, Halsey Lawrence, and Patrick Fitzpatrick. *Real analysis*. Vol. 2. New York: Macmillan, 1968.

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	B.Sc. Mathematics Honours							
Course Name	Fundamentals of Linear Algebra							
Type of Course	Discipline Capstone Course (Advanced) – DSC A							
Course Code	MCE6DSCMAT301							
Course Level	300-399							
Course Summary	Linear Algebra is a fundamental tool in many areas of mathematics, science, engineering, economics, and data science. It also has applications in machine learning, providing the mathematical foundation for many algorithms and techniques. This course on Linear Algebra deals with the basic concepts like vector spaces, linear transformations, determinants, Eigen values and Eigen vectors.							
Semester	6	Credits 4 Tota						
Course Details	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours		
		3	0	1	0	75		

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		
1	Analyse the basic concepts of vector spaces	An	1,2,3,10
2	Illustrate the fundamental properties of linear transformations	A	2,3,10
3	Compute the eigen values and eigen vectors	A	3,10

4	Deduce the connections between determinants and other linear algebra concepts	An	1,2,3,10					
5	Apply computational software and tools in linear algebra computations.	A	2,3,9					
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)								

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.		
	1.1	Vector Spaces: Definition and examples		1		
	1.2	Subspaces		1		
	1.3	Linear Combination of Vectors, Spanning Set, Linear Dependence and Independence of Vectors	20	1		
1	1.4	Basis of a Vector Space		1		
	1.5	Dimension of a Vector Space		1		
		Problems (Practicum)				
		Text 1: Chapter 5	_			
	2.1 Linear Mappings		_	2		
	2.2	Kernel and Range of a Linear Mapping	_	2		
	2.3	Bijective Linear Mappings	20	2		
2	2.4	Dimension Theorem		2		
2	2.5	Rank and Nullity	_	2		
	2.6	Linear Isomorphism		2		
		Problems (Practicum)		2		
	Text 1: Chapter 6					
	3.1	Eigen Values and Eigen Vectors	_	3		
	3.2	Characteristic Polynomial, Characteristic Equation and Algebraic Multiplicity	20	3		
3	3.3	Eigen Space and Geometric Multiplicity		3		
		Problems (Practicum)				
		Text 1: Chapter 9 (up to and including theorem 9.2)				
	4.1	Determinantal Mapping		4		
	4.2	Determinant of a Matrix as a Determinantal Mapping	_	4,5		
1	4.3	Laplace Expansion	15	4		
4	4.4	Adjoint and Inverse of a Matrix		4,5		
		Problems (Practicum)		4,5		
	Text 1: Chapter 8 [Theorems(Statements only) and applications.]					
5		Teacher Specific Content		4		

This can be either classroom teaching, practical session, field visit etc. as
specified by the teacher concerned)
This content will be evaluated internally

Teaching		Classroom Pr	rocedure (l	Mode of tra	nsaction)			
and Learning Approach		Lectures, Tutorials, Interactive Sessions, Blended Learning						
		MO	DE OF ASS	SESSMENT				
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks						
		Compo	onents		Mark Di	Mark Distribution		
		Module	Test -1		5 N	Iarks		
		Module	Test -2		5 N	Iarks		
		Module	Test -3		5 N	Iarks		
		Module Test -4			5 N	Iarks		
		Assignment/ Seminar			5 Marks			
		Quiz/Viva			5 Marks			
		Total			30 Marks			
Assessment	B	B End Semester Evaluation (ESE)			70 marks			
Types		Question Pattern						
		[Maximum Time 2 Hours, Maximum]		
		Module	Part A	Part B	Part C			
			2 Marks	6Marks	10 Marks	Total		
		Ι	2	2	1	5		
		II	2	2	2	6		
		III	2	2	1	5		
		IV	2	2	2	6		
		Total no of questions	8	8	6	22		
		Number of questions to be answered	5	5	3	13		
		Total Marks	10	30	30	70		

TEXT BOOK:

^{1.} Blyth, T. S., and E. F. Robertson. Basic linear algebra, Second Edition, Springer, 2007.

SUGGESTED READINGS:

- 1. Strang, Gilbert. Introduction to linear algebra (5th ed.). Wellesley-Cambridge Press, 2016.
- 2. Lay, D. C. Linear algebra and its applications (5th ed.). Pearson Education, 2018.
- 3. Axler, S. Linear algebra Done Right (3rd ed.). Springer, 2015
- 4. Hoffman, K., & Kunze, R. Linear algebra (2nd ed.). Prentice Hall, 2009.
- Lipschutz, S., Lipson, M. Schaum's outline of theory and problems of linear algebra (4th ed.). McGraw-Hill, 2009.
- 6. Thamban Nair, M., Singh, A. Linear Algebra. Springer, 2018.
- 7. Anton, H. Elementary linear algebra (12th ed.). Wiley, 2019.
- 8. Kumaresan, S. Linear Algebra: A Geometric Approach. PHI Learning, 2015.
- 9. Bronston, T. A., Costa, A. C. R. Linear algebra: An introduction (4th ed.), Academic Press, 2013.
- 10. Video lectures of Gilbert Strang hosted by MIT Open CourseWare available at https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/video_galleries/video-lectures/

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	B.Sc. Mathematics Honours								
Course Name	Applications of Calculus and Linear Algebra in Finance								
Type of Course	Discipline Specific Course (DSC A)								
Course Code	de MCE6DSCMAT302								
Course Level	Course Level 300-399								
Course Summary	The goal of this course is to give the students a deeper understanding and working Knowledge of the application of mathematical concepts in Economic Analysis, via more sophisticated, realistic, and interesting models								
Semester	6	Credits			4				
Course Details	Learning Approach	Lecture	Tutorial	Practicum	Others	Total Hours			
Pre- requisites, If any	A deeper understand	ים ing of mat	thematical	1 Analysis and .	U Algebra	/5			

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		
1	Apply the concept of single variable and several variable calculus to the problems in Economics.	А	2,3,6
2	Analyze the money market and goods market and understand the trading strategy and use it effectively	An	1,2,6,7
3	Create an optimum solution in terms of productivity and profitability for economic problems	С	2,3,6,10

4

E

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
		Application of Calculus in Finance		
	1.1	Production Functions, Cost Functions, Revenue and Profit Functions, Demand Functions and Elasticity	1	
		(<u>Practicum)</u> Exercise problems (Text 1)		
	1.2Base10 Logarithms, Base e Logarithms, Present Value, Annuities, Optimal Holding TimeEconomic Interpretation, Marginal Products, Elasticity, Geometric			
	1.3	Economic Interpretation, Marginal Products, Elasticity, Geometric Interpretation, an application of higher derivatives in economics, Exercise problems of section 3.6,14.3,14.8		
1		(Practicum)Problems on Elasticity Text II (section 7.7 Exercise)		15
	1.4	System of implicit function (proof excluded) Comparative statics, Simpson's paradox, Exercise problems (Practicum)Exercise Problems of section 15.4 text I, Problems related to Comparative statics Text II (section 13.7)	1	
	Text 14.2,	1: Chapter 3- Section: 3.6; Chapter 5- Sections: 5.3, 5.6; Chapter 14 14.3, 14.8(An Economic application); Chapter 15- Sections:15.3, 15.	-Sect 4 & 1	ions: 5.6
		Linear Algebra in Finance		
2	2.1	EXAMPLES OF LINEAR MODELS Example 1: Tax Benefits of Charitable Contributions, Example 2: Linear Models of Production, Example 3: Markov Models of Employment, Example 4: IS-LM Analysis, Example 5: Investment and Arbitrage	2	20
	2.2	Application to Portfolio Theory, IS-LM analysis via Cramer'S Rule (Practicum)Exercise problems Text1 section 9.3	2	

	2.3	Budget Sets in Commodity Space, Input Space, Probability Simplex	2	
	2.4	The Investment Model, IS-LM Analysis, Supply demand	2	_
	Text The 26.4	(Practicum)Exercise 10.42 Text 1(Section 10.7) t 1: Chapter 6- Section: 6.2; Chapter 7- Section: 7.4(Application to Po ory); Chapter 9- Section:9.3; Chapter 10- Section: 10.7; Chapter 26- S	rtfo] Secti	lio on:
	3	Optimization in Finance	3	
	3.1	Quadratic forms, Definiteness of Quadratic forms, : Second Order Conditions and Convexity, Conic Sections, The Definiteness of Diagonal Matrices. The Definiteness of 2 X 2 Matrices	3	
3	3.2	Definiteness and Optimality One Constraint, Other Approaches, Profit- Maximizing Firm, Discriminating Monopolist, Least Squares Analysis <u>(Practicum)</u> Exercise of section 16.3 Text 1	3	20
	3.3	Homogeneous Function, Definition and Examples, Homogeneous Functions in Economics, Properties of Homogeneous Functions, A Calculus Criterion for Homogeneity	3	
	3.4	Economic Applications of Euler's Theorem, Homogenizing a Function, Economic Applications of Homogenization, cardinal versus ordinal utility	3	
	Sect	Advanced Calculus in Finance	pter	· 20-
	4.1	Concave functions in Economics, quasi concave and quasi convex Functions, Calculus Criteria, Pseudo concave functions	4	
	4.2	Concave programming-Unconstrained Problems, Constrained Problems, Saddle Point Approach <u>(Practicum)</u> Exercise of section 21.5 Text 1	4	
ŀ	4.3	Utility Maximization, The Demand Function, The Indirect Utility Function, The Expenditure and Compensated Demand Functions, The Slutsky Equation, profit and cost, The Proft- Maximizing Firm, The Cost Function	4	20
	4.4	Necessary Conditions for a Pareto Optimum Sufficient Conditions for a Pareto Optimum The Fundamental Welfare Theorems Competitive Equilibrium, Fundamental Theorem of Welfare Economic	4	
	Text Cha	t 1: Chapter 21- sections: 21.2(Concave functions in Economics)21.3 to pter 22- sections: 22.1 to 22.4(proof of theorems from all sections excl	o21. lude	5; d)
,	Cha Teac field inte	pter 22- sections: 22.1 to 22.4(proof of theorems from all sections excl cher Specific Contents(This can be either classroom teaching, practical s visit etc. as specified by the teacher concerned)This content will be eval rnally	sessi uate	d) on ed

Practicum

Practicum is designed to provide supervised practical application of theoretical knowledge and skills.It's purpose is to encourage creativity and develop ProblemSolving Skills.The practicum component is to be done in the classroom under thestrict guidance of the teachers.A minimum of 30 problems is to be solved, and a handwrittencopy of the solutions should be kept in the department.

Teaching	Classroom Procedure (Mode of transaction)							
and Learning Approach]	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion						
		MO	DE OF ASS	SESSMENT				
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks						
		Compo	nents		Mark Distribution			
		Module	Test -1		5 N	Iarks		
		Module	Test -2		5 N	Iarks		
		Module	Test -3		5 Marks			
		Module Test -4			5 N	Iarks		
		Assignment/ Seminar			5 Marks			
		Quiz/	Quiz/Viva			5 Marks		
		Total			30 N	Marks		
Assessment	B	End Semes	ster Evalua	ation (ESE)	70 marks			
Types		Question Pattern						
		[Maximum T	[Maximum Time 2 Hours, Maximur)]		
		-	Part A	Part B	Part C			
		Module	2 Marks	6Marks	10 Marks	Total		
		Ι	2	2	1	5		
		II	2	2	2	6		
		III	2	2	1	5		
		IV	2	2	2	6		
		Total no of questions	8	8	6	22		
		Number of questions to be answered	5	5	3	13		
		Total Marks	10	30	30	70		

TEXT BOOKS:

- 1. Carl P. Simon and Lawrence, Mathematics for Economists, Blume Viva Books, 2018
- 2. Sydsæter, Knut, Peter J. Hammond, Arne Strom. *Essential mathematics for economic analysis*. Pearson Education, 4th edition 2012.

SUGGESTED READINGS:

- 1. Chiang, C., Fundamental Methods of Mathematical Economics, McGraw Hills, (Latest Edition).
- 2. Budnick, Frank, Applied Mathematics for Business, Economics and Social Sciences, McGraw Hills Education, 2017.
- 3. Dowling E. T., Mathematics for economists, Schum Series (latest edition)
- 4. Rosser, Mike, Basic Mathematics for Economists, Routledge, Taylor & Francis Group, 2003.

ADVANCED READING:

1. Weber E. Jean, Mathematical Analysis, Business and Economic Applications (Latest Edition) Harper and Row Publishers, New

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Course Name	An Invitation to Fuzzy Mathematics							
Type of Course	Discipline Specific Elective – DSE							
Course Code	MCE6DSEMAT300							
Course Level	300-399							
Course Summary	This course provides a comprehensive introduction to fuzzy set theory and its applications. It begins with a foundational overview of crisp sets before delving into the core concepts of fuzzy sets, including membership functions, alpha-cuts, and set operations. The course then explores fuzzy relations, equivalence relations, and compatibility relations. A significant portion is dedicated to fuzzy graph theory, covering its fundamentals, different types of fuzzy graphs, and concepts like connectivity bridges and aut vertices.							
Semester	6	Credits	Credits 4			Total		
Course	Learning	Lecture	Tutorial	Practicum	Others	Hours		
Details	Approach	4	0	0	0	60		
Pre- requisites, If any								

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon	the completion of the course, student will be able to:		
1	Comprehensive understanding of fuzzy set theory	U	1,3
2	To acquire proficiency in performing operations on fuzzy sets and fuzzy relations.	А	2,4

3	To develop the skills to use fuzzy tools and techniques in various fields such as graphs.	S	1,2				
4	To handle the real-life situations using Fuzzy Graphs	Ι	1,7				
*Reme (S), Int	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours				
	1.1	Crisp Sets: An over view	1					
	1.2 Fuzzy Sets: Basic Types & Concepts 1		1	17				
1	1.3	c) Alpha Cuts	1					
	1.4	Additional properties of Alpha cuts, Representation of Fuzzy Sets & Extension Principle for fuzzy sets	1					
	Text 1	: Chapter 1- Sections: 1.1 to 1.4; Chapter 2- Sections: 2.1 to	0 2.3					
	2.1	Types of Operations	2					
	2.2	Fuzzy Compliments	2	15				
2	2.3	Fuzzy intersection : t -norm	2					
	2.4	2						
	Text 1: Chapter 3- Sections: 3.1 to 3.4							
	3.1	Crisp versus Fuzzy Relations	2					
3	3.2	Binary Fuzzy Relations	3					
	3.3	Binary Relation on a single set	3	15				
	3.4	Fuzzy Equivalence Relations & Compatibility Relations	3					

Module	Units	Course Description	CO No:	Hours				
	Text 1	Text 1: Chapter 5- Sections: 5.1, 5.3 to 5.6						
	4.1	Graph theory Revisited: Definition, Sub graph, connectivity, cut vertex, cut edge.	4					
	4.2 Fuzzy graph with Example 4		4	13				
4	4.3	Different types of Fuzzy Graphs with Examples						
	4.4 Connectivity in Fuzzy Graphs, Fuzzy Bridge and Fuzzy Cut vertex with examples		4					
	4.5	4.5 Complete Fuzzy Graphs with examples						
	Text 2: Chapter 2- Sections: 2.1, 2.2, 2.2.1(proof is included)							
5	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned</i>)							
	This co	ontent will be evaluated internally						

Teaching	Classroom Procedure (Mode of transaction)						
and Learning Approach	Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion						
		MODE OF ASSESSMENT					
	Α	Continuous Comprehensive Assessme	nt (CCA) 30 Marks				
		Components	Mark Distribution				
		Module Test -1	5 Marks				
Assessment		Module Test -2	5 Marks				
Types		Module Test -3	5 Marks				
		Module Test -4	5 Marks				
		Assignment/ Seminar	5 Marks				
		Quiz/Viva	5 Marks				
		Total	30 Marks				
	B	End Semester Evaluation (ESE) 70 marks					

	Question	Pattern			
[Maximum Time 2 Hours, Maximum Marks 70]					
	Part A	Part B	Part C		
Module	2 Marks	6Marks	10 Marks	Total	
Ι	2	2	1	5	
II	2	2	2	6	
III	2	2	1	5	
IV	2	2	2	6	
Total no of questions	8	8	6	22	
Number of questions to be answered	5	5	3	13	
Total Marks	10	30	30	70	

TEXT BOOK:

- 1. Klir, George J., Yuan, Bo. *Fuzzy Sets and Fuzzy Logic Theory and Applications*, Pearson India Education services Pvt Ltd, 2015.
- 2. Sunil Mathew., John N Modeson., Davendar S Malik. , Fuzzy Graph Theory. Springer, 2018.
- 3. Wilson, Robin J; Introduction to Graph Theory 5th ed, Pearson Education Limited, 2010.

SUGGESTED READINGS:

- 1. Zimmermann, Hans-Jürgen. *Fuzzy set theory—and its applications*. Springer Science & Business Media, 2011.
- 2. Dubois, D., and H. Prade. "Fuzzy sets and systems: theory and applications." Mathematics in science and engineering (144 (1980).
- 3. John N. Mordeson, Davender S. Malik. Fuzzy Graphs: Theory and applications.

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	B.Sc. Mathematic	B.Sc. Mathematics Honours						
Course Name	Combinatorics	Combinatorics						
Type of Course	Discipline Specifi	Discipline Specific Elective – DSE						
Course Level	300-399	300-399						
Course Code	MCE6DSEMAT30	MCE6DSEMAT301						
Course Summary	This course is a dynamic exploration of fundamental combinatorial concepts, focusing more on problems than theory. This approach aims to help students excel in competitive examinations by thoroughly covering exercise problems. Mainly deals with counting problems.							
Semester	6	Credits			4	Total		
Course	Learning	earning Lecture Tutorial Practicum Others Hours						
Details	Approach	Approach 4 0 0 60						
Pre- requisites, If any	Elementary Algeb theory	ra, Basic Se	t theory, Bas	ic understandin	g of Proba	bility		

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon	the completion of the course, student will be able to:		
1	Provides a valuable toolkit for students preparing for various exams, offering a wealth of problems that sharpen logical reasoning and problem-solving skills.	S	1,2
2	Apply combinatorial methods to model and analyze real- world problems, emphasizing the translation of problems into mathematical language.	A, An	1,2,3,4
3	Apply Pigeonhole principal and ramsey numbers in various real life problems.	U	1,2,3

4	Develop critical thinking skills by analyzing and synthesizing complex combinatorial problems, evaluating different approaches, and selecting the most suitable	С	1,2,3,4,10			
	strategies.					
*Rem (S), In	*Remember (K), Understand (U), Apply (A), Analyze (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours
1	1.1	Two basic counting principles	1	
	1.2	Permutations	1	
	1.3	Circular permutations	1	15
	1.4	Combinations	1	
	Text 1:	Chapter 1- Sections: 1.1 to 1.4	I	
2	2.1	The injection and bijection principles	2	15
	2.2	Arrangements and selections with repetitions	2	
	2.3	2		
	Text 1:	Chapter 1- Sections: 1.5 to 1.7		
3	3.1	Introduction	3	15
	3.2	The Pigeonhole principle	3	
3.3 More examples		More examples	3	
	3.4 Ramsey Type problems and Ramsey numbers		3	
	3.5	Bounds for Ramsey Numbers	3	
	Text 1: only)	Chapter 3 - Sections: 3.1 to 3.5 (Theorems 3.5.1 and 3.5	5.2 – state	ements
4	4.1	Introduction		4

	4.2	The Principle of Inclusion and Exclusion:	4	
	4.3	A generalization	4	
	4.4	Integer solutions and shortest routes	4	
	4.5	The Sieve of Eratosthenes and Euler function	4	
	Te	xt 1: Chapter 4 - Sections: 4.1 to 4.4 & 4.7 (Theorem 4.3.1- stater	nent only))
5	Tead sessior	cher Specific Contents (This can be either classroom teaching a, field visit etc. as specified by the teacher concerned) This o evaluated internally	<i>g, practic</i> content w	<i>al</i> vill be

Teaching	Classroom Procedure (Mode of transaction)								
and Learning Approach	Lecture, Tutorial and Activity oriented								
		MODE OF ASSESSMENT							
	Α	Continuous Comp	rehensive	Assessme	nt (CCA) 3	0 Marks			
		Compo	nents		Mark Di	stribution			
		Module 7	Test -1		5 N	Iarks			
		Module '	Test -2		5 N	Iarks			
		Module Test -3		5 Marks					
		Module Test -4				5 Marks			
		Assignment/ Seminar			5 Marks				
Assessment		Quiz/Viva		5 Marks					
Types		Tot	30 Marks						
	B								
		Question Pattern							
		[Maximum T	'ime 2 Hour	rs, Maximun	n Marks 70]			
			Part A	Part B	Part C				
		Module	2 Marks	6 Marks	10 Marks	Total			
		Ι	2	2	1	5			
		II	2	2	2	6			
		III	2	2	1	5			
		IV	2	2	2	6			

	Total no of questions	8	8	6	22
	Number of questions to be answered	5	5	3	13
	Total Marks	10	30	30	70

TEXTBOOK:

1. Chen, Chuan-Chong, and Koh Khee-Meng. *Principles and techniques in combinatorics*. World Scientific, 1992.

SUGGESTED READINGS:

1. Krishnamoorthy, V., Hoewood, E. Combinatorics theory and applications, 1986.

2. Hall, Jr. Combinatorial Theory, Wiley-Interscinice, 1998.

3. Brualdi, RA. *Introductory Combinatorics*, PrenticeHall,1992

4. Bona Miklos. *A Walk Through Combinatorics – An Introduction to Enumeration and Graph Theory*, Second Edition, World Scientific, 2006.

ADVANCED READINGS:

1. Bóna, Miklós, ed. Handbook of enumerative combinatorics. Vol. 87. CRC Press, 2015.

2. Flajolet, Philippe, and Robert Sedgewick. *Analytic combinatorics*. Cambridge University press, 2009.

3. Harris, John M. Combinatorics and graph theory. Springer, 2008.

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	B.Sc. Mathematics					
Course Name	Computations and Graphics Using Scilab					
Type of Course	Discipline Specific Elective – DSE					
Course Code	MCE6DSEMAT302					
Course Level	300-399					
Course Summary	The course is designed for doing computations, matrix operations, solving system of linear equations, plotting data, visualisation of curves and solving differential equations using Scilab.					
Semester	6	Credits		4		
Course Details	Learning Approach	Lecture	Tutorial	Practicum	Others	Total Hours
		4	0	0	0	60
Pre- requisites, If any	Fundamental knowledge on algebraic equations, mathematical functions, matrices, differential equations.					

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		
1	Understand the basic commands used for fundamental mathematical calculations using Scilab	U,S	2, 10
2	Apply basic programming techniques in Scilab to compute the value of expressions involving mathematical functions.	A,S	1, 2
3	Apply Scilab to do various operations in Matrices and solving system of linear equations.	A,S	1, 2

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		
1	Understand the basic commands used for fundamental mathematical calculations using Scilab	U,S	2, 10
4	Apply Scilab to plot various mathematical functions, expressions and solving differential equations.	A,S	2

derstand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

CO Module Units **Course Description** Hours No: The General Environment and Console, Simple Numerical 1.1 1 Calculations 1.2 The Menu bar, The Editor 1,2 12 1 The Graphics Window (Graphics for Plotting, Modifying a 1.3 Plot, Online help), Windows Management and Workspace 4 Customization **Text 1: Chapter 1 – Become Familiar with Scilab** 2.1 Variables Assignment and Display (Variables, Functions) 1 Variables Assignment and Display (Display - Brackets : 15 2.2 1.2 Vectors and Matrices, Strings) 2 2.3 1,3 Loops – for, while, Tests – if.. then.. else.. Tests **Text 1: Chapter 2 – Programming – sections: Variables Assignments and Display to Tests** 2 D and 3D Plots (Basic Plots - of Mathematical Functions, 3.1 4 Plots of Plane Curves) 3 18 2 D and 3D Plots (Plots of Sequence of Points, Bivariate 3.2 4 Statistical Data)
	3.3	2 D and 3D Plots (Plots in 3 dimensions – surfaces and curves)	4			
	3.4	2 D and 3D Plots (Simulations and Statistics, Statistics - Plotting Data using Bar graphs)	4			
	Text 1	: Chapter 2 – Programming – sections: 2 D and 3D Plots				
	4.1	Additional Information on Matrices and Vectors (Accessing Elements, Operations on Matrices)	3			
4	4.2	Additional Information on Matrices and Vectors (Solving Linear Systems, Some useful Functions- sort, length, sum and product)	3	15		
	4.3	Additional Information on Matrices and Vectors (Some useful Functions - unique, find), Accuracy Computation, Solving Differential Equations	2, 4			
	Text 1: Chapter 2 Programming – sections: Additional Information on Matrices and Vectors to Solving Differential Equations					
5	Teacher Specific Contents(This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned)This content will be evaluated internally					

Teaching		Classroom Procedure (Mode of tra	insaction)				
and Learning Approach	Interactive Instructions using ICT Tools, Hands on Training						
		MODE OF ASSESSMENT					
	Α	Continuous Comprehensive Assessme	nt (CCA) 30 Marks				
		Components	Mark Distribution				
		Module Test -1	5 Marks				
Assessment		Module Test -2	5 Marks				
Types		Module Test -3	5 Marks				
		Module Test -4	5 Marks				
		Assignment/ Seminar	5 Marks				
		Quiz/Viva	5 Marks				
		Total	30 Marks				
	B	End Semester Evaluation (ESE)	70 marks				

	Question	Pattern		
[Maximum Time 2 Hours, Maximum Marks 70]				
	Part A	Part B	Part C	
Module	2 Marks	6Marks	10 Marks	Total
Ι	2	2	1	5
II	2	2	2	6
III	2	2	1	5
IV	2	2	2	6
Total no of questions	8	8	6	22
Number of questions to be answered	5	5	3	13
Total Marks	10	30	30	70

1. https://www.scilab.org/sites/default/files/Scilab_beginners.pdf

SUGGESTED READINGS:

- 1. https://scilab.in/textbook_companion/generate_book/845
- 2. https://www.scilab.org/sites/default/files/progscilab-v.0.10_en.pdf

(Govt. Autonomous)

Programme	B.Sc. Mathematics Honours						
Course Name	Mathematical Co	Mathematical Computation and Visualization with R					
Type of Course	Value Addition C	Value Addition Course (VAC)					
Course Code	MCE6VACMAT3	00					
Course Level	300-399	300-399					
Course Summary	This course delve visualization using embark on a jourr and applications i	is into the re g the power ney through n various m	ealm of ma ful R progr the fundar nathematica	thematical compu amming language nentals of R, exp al domains.	utation and e. Student loring its fu	s will unctionality	
Semester	6	Credits			3	Total	
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours	
Details	Approach	3	0	0	0	45	
Pre- requisites, if any	Nil						

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon t	he successful completion of the course, student will be able	to:	
1	Apply R to represent and manipulate sets, including operations like union, intersection, and difference	U	1,2,4,10
2	Apply matrix concepts to represent and solve system of linear equations in R	A	1,2,4,10
3	Solve various matrix operations.	А	1,2,4,10

CO No.	Expected Course Outcome	Learning Domains *	PO No				
Upon t	he successful completion of the course, student will be able	to:					
4	Compute determinants of matrices using R & employ Cramer's rule to solve system of linear equations in R	А	1,2,4,10				
5	Apply R to analyse functions	А	1,2,4,10				
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)							

Module	Units	Course Description	CO No.	Hrs				
1		R FUNCTIONS AND AN OVERVIEW OF SETS USING R						
	1.1	Functions, Parameter versus Argument, Argument Order and Parameter Names, Environments, Scope						
	1.2	Sets, Venn diagram, Cardinality of sets, Implementing the Subset Function in R, Equality of Sets, Empty Set.	1	15				
	1.3	Operations on Sets – Intersection, Union, Complement, Cross Product of two sets.	1					
	Text 1: Chapter 1 - Sections: 1.2 to 1.6; Chapter 3- Sections: 3.1 to 3.9 & 3.11.							
		SYSTEM OF LINEAR EQUATIONS AND MATRICES IN R						
	2.1	Matrix & Vector in R	2					
	2.2	Solving a System of Linear Equations with R (Gaussian Elimination in R)		15				
2	2.3	Matrix Operations in R - Addition, Scalar multiplication, Dot product, Transpose						
	2.4	Determinant, function, Cramer's rule in R	4					
	Text 2:	Chapter 1 – Sections: 1.2.3, 1.2.7, 1.3.3, 1.3.7; Chapter 2 - Sections	ections	;:				
	2.1, 2.2	2(2.2.1-2.2.3 & 2.2.7); Chapter 3 - Sections: 3.3 det() function	only ,	3.3.4				
	{lab exercises using det() function}, 3.5.3 & 3.5.7.							

3		PLOTTING GRAPHS IN R				
	3.1	Basic arithmetic, Define and Evaluate a Function, Graph a Function in R, Find Roots of a Function, Store Roots as a Variable and Display the First Root, Evaluate a Function with a Variable, Add a Point to a Graph, Evaluate a Function at Multiple Values, Add Multiple Points to a Graph		15		
	3.2	Define a Function from a Function, Define a Function and Graph It, Identify Intersection Points and Add Them to the Graph, Add a Line Segment to a Graph	5			
	Text 3: Chapter 1 (R codes 1.1 to 1.20)					
4	Teache sessior evalua	er Specific Contents(This can be either classroom teaching, pra n, field visit etc. as specified by the teacher concerned)This cont ted internally	actical ent wil	l be		

	Classroom Procedure (Mode of transaction)					
	Interactive instructions using ICT tools Hands on training					
Teaching and Learning Approach	The ma lan pra the the the Co ma As	The primary goal of this class is to enhance students' proficiency in mathematical computation and visualization using the R programming language. The course will cover fundamental mathematical concepts and their practical implementation through R. Class Structure:Introduction - Outline the goals and expectations for the class Recap and Review - Briefly review the key concepts covered Theory and Conceptual Understanding - Discuss theoretical aspects and provide real-world examples Hands-On Computation with R - Conduct practical exercises using R to reinforce mathematical concepts Group Project - Assign a group project Homework Assignment - Assign relevant homework to reinforce learning				
	MODE OF ASSESSMENT					
	Α	A Continuous Comprehensive Assessment (CCA) 25 Marks				
		Components	Mark Distribution			
Assessment		Module Test -1	5 Marks			
Types		Module Test -2	5 Marks			
		Module Test -3	5 Marks			
		Assignment/ Seminar	5 Marks			
		Quiz/Viva	5 Marks			
		Total	25 Marks			

B	End Semester Evaluation (ESE) 50 marks					
		Question Pattern				
	[Maximum Tir	[Maximum Time 75 Minutes, Maximum Marks 50]				
		Part A Part B				
	Module	2 Marks	5 Marks	10 Marks	Total	
	I	4	1	1	6	
	II	2	3	2	7	
	III	2	2	1	5	
	Total no of questions	8	6	4	18	
	Number of questions to be answered	5	4	2	11	
	Total Marks	10	20	20	50	

- 1. Claster, William B. *Mathematics and programming for machine learning with R: from the ground up.* CRC Press, 2021.
- 2. Yoshida, Ruriko. *Linear algebra and its applications with R.* CRC Press, 2021.
- 3. Pfaff, Thomas J. Applied Calculus with R. Springer International Publishing, 2023.

SUGGESTED READINGS:

- 1. Zuur, Alain F., Elena N. Ieno, and Erik HWG Meesters. A Beginner's Guide to R. New York: Springer, 2009.
- Matloff, Norman. The art of R programming: A tour of statistical software design. No Starch Press, 2011.
- 3. Strang, Gilbert. Introduction to linear algebra. Wellesley-Cambridge Press, 2022.
- 4. Weir, Maurice D., et al. Thomas' calculus: early transcendentals: based on the original work by George B. Thomas, Jr. Addison-Wesley, 2006.

ADVANCED READINGS:

- 1. Emmert-Streib, Frank S., Salissou Moutari and Matthias Dehmer. *Mathematical Foundations of Data Science using R*, De Gruyter, 2022.
- 2. Jones, Owen, Robert Maillardet and Andrew Robinson. *Introduction to Scientific Programming and Simulation Using R*, 2 nd edition, Chapman & Hall/CRC, 2014.

(Govt. Autonomous)

Programme	B.Sc. Mathemati	B.Sc. Mathematics Honours					
Course Name	Computations a	Computations and Graphics using SageMath					
Type of Course	Skill Enhanceme	Skill Enhancement Course (SEC)					
Course Code	MCE6SECMAT300						
Course Level	300-399						
Course Summary	The course is des Plotting Data and	The course is designed for doing Computations, Analysis, Linear Algebra, Plotting Data and Visualisation of curves using SageMath.					
Semester	6	Credits			3	Total	
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours	
Details	Approach	3	0	0	0	45	
Pre- requisites, if any	Fundamental Kno Sequences, Serie Matrices, Eigenva	owledge or es, Power S alues and B	algebraic Series, Limi Eigenvector	equations, trigor its, Derivatives, 's.	nometric fur Partial Deri	nctions, vatives,	

CO No.	Expected Course Outcome	Learning Domains *	PO No			
Upon t	Upon the successful completion of the course, student will be able to:					
	Discuss the basic commands used for mathematical		1.0			
1	calculations using SageMath	0, 5	1,2			
	Apply basic programming skills in SageMath to compute		4004			
2	the limits and derivatives of various functions	A, 5	1,2,3,4			

3	Apply SageMath to do various operations in Matrices.	A, S	1,3,9			
4	Use SageMath to plot various mathematical functions and data structures.	A, S	1,3,9,10			
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

Module	Units	Course Description	CO No.	Hrs			
	1.1	Sage as a Calculator – First Computations Elementary Functions and Usual Constants On-line help and Automatic Completion	1				
	1.2Python Variables Symbolic Variables (Using Variables and Expressions) First Graphics (Graphics - Plotting Functions)11.3Symbolic Expressions and Simplification – Symbolic Expressions, Transforming Expressions, Usual Mathematical Functions, Assumptions, Some Pitfalls1		1				
			1	20			
	1.4	1.4 Equations – Explicit Solving, Equations with no Explicit Solution 2					
	1.5	Analysis – Sums, Limits, Sequences, Power Series Expansions, Series, Derivatives, Partial Derivatives, Integrals	2				
	Text 1: Chapter 1 – Section: 1.2 (1.2.1 to 1.2.6); Chapter 2 – Sections: 2.1 to 2.3						
	2.1	Basic Linear Algebra - Matrix Computations, Reduction of a Square Matrix	3				
	2.2	Elementary Constructs and Manipulations – Vector and Matrix Constructions		13			
2	2.3	Basic Manipulations and Arithmetic on Matrices, Basic Operations on Matrices	3				
	Text 1: to 8.1.4	Text 1: Chapter 2 – Section: 2.4 (2.4.3 to 2.4.4); Chapter 8 – Section: 8.1 (8.1.2 to 8.1.4))					
3	3.1	2 D Graphics - Graphical Representation of Functions		12			

Module	Units	Course Description	CO No.	Hrs	
	1.1	Sage as a Calculator – First Computations Elementary Functions and Usual Constants On-line help and Automatic Completion	1		
	1.2	.2 Python Variables Symbolic Variables (Using Variables and Expressions) First Graphics (Graphics - Plotting Functions)			
1	1.3	Symbolic Expressions and Simplification – Symbolic Expressions, Transforming Expressions, Usual Mathematical Functions, Assumptions, Some Pitfalls	1	20	
	1.4	Equations – Explicit Solving, Equations with no Explicit Solution	2		
	1.5	Analysis – Sums, Limits, Sequences, Power Series Expansions, Series, Derivatives, Partial Derivatives, Integrals	2		
	Text 1: 2.3	Chapter 1 – Section: 1.2 (1.2.1 to 1.2.6); Chapter 2 – Sectio	ons: 2.1	to	
	2.1	Basic Linear Algebra - Matrix Computations, Reduction of a Square Matrix	3		
	2.2	2.2 Elementary Constructs and Manipulations – Vector and Matrix Constructions		13	
2	2.3	Basic Manipulations and Arithmetic on Matrices, Basic Operations on Matrices	3		
	Text 1: to 8.1.4	Chapter 2 – Section: 2.4 (2.4.3 to 2.4.4); Chapter 8 – Sectio))	on: 8.1 (8.1.2	
	3.2	Parametric Curves, Curve in Polar Co-ordinates, Curve defined by Implicit Equation	4		
	3.3	Data Plot, Displaying Solutions of Differential Equations, Evolute of a Curve	4		
	3.4	3 D Curves	4		
	Text 1:	Chapter 4 – Sections: 4.1 & 4.2			
4	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned</i>) This content will be evaluated internally				

Teaching	Classroom Procedure (Mode of transaction)
and	Interactive instructions using ICT tools Hands on training

Learning Approach							
	MODE OF ASSESSMENT						
	A	Continuous Comprehensive Assessment (CCA) 25 Marks					
		Compo	onents		Mark Di	stribution	
		Module	Test -1		5 N	Iarks	
		Module	Test -2		5 N	Iarks	
		Module	Test -3		5 N	Iarks	
		Assignment/ Seminar			5 Marks		
		Quiz/Viva			5 Marks		
		Total			25 Marks		
Assessment	B	End Semester Evaluation (ESE) 50 marks					
Types							
	[Maximum Time 75Minutes, Maximum May					as 50]	
			Part A	Part B	Part C		
		Module	2 Marks	5 Marks	10 Marks	Total	
		Ι	4	1	1	6	
		II	2	3	2	7	
		III	2	2	1	5	
		Total no of questions	8	6	4	18	
		Number of questions to be answered	5	4	2	11	
		Total Marks	10	20	20	50	

 Paul Zimmermann, Alexandre Casamayou, Nathann Cohen, Guillaume Connan, Thierry Dumont, Laurent Fousse, François Maltey, Matthias Meulien, Marc Mezzarobba, Clément Pernet, Nicolas M. Thiéry, Erik Bray, John Cremona, Marcelo Forets, Alexandru Ghitza, Hugh Thomas. *Computational Mathematics with SageMath.*, SIAM, 2018

SUGGESTED READINGS:

1. Razvan A. Mezei. Introduction to Programming Using SageMath, Wiley, 2020.

- The Sage Development Team , Tutorial Release 10.2 ,2023, (https://doc.sagemath.org/pdf/en/tutorial/sage_tutorial.pdf).
- 3. Gregory V. Bard, William Stein, Sage for Undergraduates, American Mathematical Society, 2015)
- 4. Robert Beezer, A first course in Linear algebra, Congruent Press,2015,(http://linear.ups.edu/)
- 5. Tom Judson and Robert Beezer, Abstract Algebra Theory and Applications., open source textbook supported by National Science Foundation, 2022 (<u>http://abstract.ups.edu/</u>)
- 6. Razvan A Mezei , An Introduction to SAGE Programming: With Applications to SAGE Interacts for Numerical Methods by, Springer, 2015.

(Govt. Autonomous)

Programme	B.Sc. Mathematics (Honours)					
Course Name	Advanced Linear Algebra					
Type of Course	Discipline Capstone Course (Advanced) – DCC					
Course Code	MCE7DCCMAT400					
Course Level	400-499					
Course Summary	This course on linear algebra provides a comprehensive introduction to the fundamental concepts and techniques of linear algebra. The course covers a wide range of topics, including vector spaces, coordinates, linear transformations, linear functionals, matrix of linear transformations, dual spaces, characteristic values, annihilating polynomials, invariant subspaces, simultaneous triangulation and diagonalisation, direct sum decomposition, and invariant direct sums.					
Semester	7	Credits 4 Total			Total	
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours
	~	3	0	1	0	75
Pre-requisites, if any	Basic definitions, properties and theorems on Fields, Vector spaces, subspaces, basis and dimension.					

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon a	the completion of the course, student will be able to:		
1	Analyse finite and infinite dimensional vector spaces and subspaces over a field and their properties including basis structure of vector spaces.	An	1, 2, 3
2	Use the definition and properties of linear transformations and matrices of linear transformations and change of basis, including kernel, range and isomorphism	U,An	2,3,10
3	Compute the characteristic polynomial, eigenvectors, eigenvalues	A,E	2, 3

	and eigenspaces, as well as the geometric and the algebraic					
	multiplicities of an eigenvalue and apply the basic diagonalization					
	result					
4	Understand the basic theory of Simultaneous triangulations, Direct sum decompositions and Invariant direct sums	U,An	1,2,3,10			
5	Utilize Python to perform computations efficiently in linear algebra.	S,A	2,3,8,10			
*Rom	*Remember (K) Understand (U) Apply (A) Analyse (An) Evaluate (E) Create (C) Skill (S) Interes					

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.				
	1.1Review on Fields, Vector spaces, subspaces, basis and dime (Theorems-Statements only)			1				
	1.2	Coordinates		1,2				
	1.3 Linear transformations and Algebra of Linear Transformations		20	1,2				
1	1.4	Isomorphism	20	1,2				
		Problems (Practicum).		1,2				
	3.1 to 3.3.							
	2.1	Representation of transformations by matrices		1,2				
	2.2	Linear functionals and dual space		1,2				
2	2.3	Double dual	20	1,2				
		Problems (Practicum).		1,2				
	Chapter 3 – Sections: 3.4 to 3.6							
3	3.1	Characteristic Values.	20	3				

	3.2 Diagonalizable linear operators					3,4
	3.3		nnihilating polynomials.			2,3,4
	3.4	Ca	ayley Hamilton Theorem			3,4
	3.5		variant subspaces			3,4
			Problems (Practicum).			2,3,4
	Tex	t 1: Ch	apter 6 – Sections: 6.1 to 6.4.	1		
	4.1	Sir	Simultaneous triangulation; simultaneous diagonalization		15	3,4
4	4.2	Di	Direct sum Decompositions			3,4
	4.3	Inv	Invariant Direct Sums			3,4
		Pro	Problems (Practicum).			3,4,5
	Tex	t 1: Ch	apter 6 – Sections: 6.5 to 6.7.		- <u>r</u>	
	Teacher Specific Content Hrs					
5	5 Te		acher Specific Contents			
(fi		(This c field vis	This can be either classroom teaching, practical session, eld visit etc. as specified by the teacher concerned)			
		This co	ntent will be evaluated internally			

Teaching		Classroom Procedure (Mode of transaction)					
and Learning Approach		Lecture, Tutorials, Interactive Sessions, Blended Learning					
		MODE OF ASSESSMENT					
	A Continuous Comprehensive Assessment (CCA) 30 Ma						
		Components	Mark Distribution				
Assessment		Module Test -1	5 Marks				
Types		Module Test -2	5 Marks				
		Module Test -3	5 Marks				
		Module Test -4	5 Marks				
		Assignment/ Seminar	5 Marks				
		Quiz/Viva	5 Marks				

	Total			30 N	30 Marks	
B	End Semester Evaluation (ESE) 70 marks					
		Question	Pattern			
	[Maximum Time 2 Hours, Maximum Marks 70]					
		Part A	Part B	Part C		
	Module	2 Marks	6Marks	10 Marks	Total	
	Ι	2	2	1	5	
	II	2	2	2	6	
	III	2	2	1	5	
	IV	2	2	2	6	
	Total no of questions	8	8	6	22	
	Number of questions to be answered	5	5	3	13	
	Total Marks	10	30	30	70	

1. Hoffman, K., Kunze, R. Linear algebra: Second edition. Prentice-Hall of India Pvt. Ltd, 1992.

SUGGESTED READINGS:

- 1. Strang, G.. Linear algebra and its applications. Cengage Learning, 2016.
- 2. Lay, D. C., Lay, S. R., & McDonald, J. J. *Linear algebra and its applications* (5th ed.). Pearson, 2023.
- 3. Lang, S. Introduction to linear algebra (2nd ed.). Springer-Verlag New York, Inc, 1997.
- 4. Kumaresan, S. Linear algebra: A geometrical approach. Prentice-Hall of India, 2000
- 5. Axler, S. Linear algebra done right (4th ed.). Springer, 2023
- 6. Jänich, K. *Linear Algebra (Undergraduate Texts in Mathematics)*. Springer-Verlag New York, 2014.
- 7. Banchoff, T. F., & Wermer, J. T. *Linear algebra through geometry (2nd ed.).*

Springer,2002.

- 8. Friedberg, S. H., Insel, A. J., & Spence, L. E. Linear algebra (4th ed.). Pearson, 2013.
- 9. Horn, R. A., & Johnson, C. R. *Matrix analysis (2nd ed.)*. Cambridge, UK: Cambridge University Press, 2013.
- 10. Thamban Nair, M., & Singh, A. Linear Algebra. Springer, 2018.
- 11. Video lectures of Gilbert Strang Hosted by MITOpenCourseware available at <u>VideoLectures</u> | Linear Algebra | Mathematics | MIT Open Course Ware.
- 12. Klein, P. N. Coding the Matrix Linear Algebra through Applications to Computer Science, Newtonian Press, 2013.
- 13. Dan Bader, David Amos, Joanna Jablonski, Fletcher Heister: *Python Basics: A Practical Introduction to Python (1st Edition)* Real Python March 2021.

(Govt. Autonomous)

Programme	B.Sc. Mathematics Honours					
Course Name	Theory of Co	mplex Fun	octions			
Type of Course	Discipline Ca	pstone Co	urse(Adva	nced) – DCC		
Course Code	MCE7DCCM	IAT401				
Course Level	400-499					
	This course is	s designed	to develop	analytical skills	in comple	ex analysis
	and comprehe	nsive under	standing of	topics in comple	ex analysis	, preparing
	students for fu	urther explo	rations. It v	vill explore the p	oroperties of	of lines and
	half planes in	n the com	plex plane,	investigate po	wer series	and their
	convergence,	and unco	ver the g	eometric signif	ïcance of	spherical
	representation	s. The cou	rse will de	lve into the Mo	bius transf	ormations,
C	representation of complex analytic functions as power series, providing					
Course Summary	powerful tools for expanding and analyzing these functions. Cauchy's					
	theorems a cornerstone of complex analysis will be studied in its various					
	forms revealing its profound implications for contour integration					
	Students will master the theory of complex integration gaining proficiency					
	in evaluating integrals along contours in the complex plane. The concept					
	of the index of a closed curve open mapping theorem and argument					
	numerical and the second and the second seco					
G					4	
Semester	/	Credits			4	Total
		Lastura	Tutorial	Practical/	Others	nours
Course	Learning	Lecture	Iutorial	Practicum	Others	
	rippioacii	4	0	0	0	60
Pre- requisites if	Basic awarene	Pasia awaranass of complex numbers				
any	Basic awareness of complex numbers					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No					
Upor	the completion of the course, student will be able to:	·						
1	Demonstrate a comprehensive understanding of the properties of lines and half planes in the complex plane, power series of complex numbers, spherical representation and Möbius transforms.	U	1, 2, 3					
2	Illustrate complex analytic functions as power series expansions, recognizing the convergence properties and regions of validity of theserepresentations.	А	1, 2					
3	Analyze various versions of Cauchy's theoremand applying them to solve complex integration problems. Explain the fundamental principles of complex integration.	An	1,2,3,10					
4	Evaluate the index of a closed curve and determine the types of residues (simple, pole, and essential singularities) that can occur within a given contour	E	1,2					
*Ren (S), 1	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)							

COURSE CONTENT

Content for Classroom transaction

(Units)Module	Unit S Course Description		CO No:	Hour
	s 1.1	Lines and half planes in the complex plane	1	5
	1.2	Extended Plane and its Spherical representation	1	-
	1.3	Power Series	1	15
	1.4	Analytic functions	1	15
	1.5	Analytic functions as mappings. Mobius Transformations		
	Text 1	: Chapter 1 – Sections: 5 & 6; Chapter 3 – Sectio	ns: 1 to	o 3
	2.1	Riemann - Stieltjes integrals	2	
2	2.2	Power series representation of analytic functions	2	15
2	2.3	Zeroes of an analytic function		15
	2.4	The index of a closed curve	2	

	Text and le	1: Chapter 1 – Sections: 1 to 4 (only statements of emma 1.19)	of theor	em 1.4		
	3.1	3.1 Cauchy's theorem and integral formula				
	3.2	Homotopy version of Cauchy's theorem and simple connectivity	3	15		
3	3.3	Counting zeros, Open mapping theorem	3			
5	3.4	3.4 Goursat theorem				
	of Ca 4.1	Classification of singularities	4			
4	4.2	Residues	4	15		
	4.3	Argument Principle	4			
	Text	Text 1: Chapter 5 – Sections: 1 to 3				
5		Teacher Specific Contents(This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned) This content will be evaluated internally				

Teaching and	Classroom Procedure (Mode of transaction)							
Learning Approach								
		MODE OF ASSESSMENT						
	Α	Continuous Comp	orehensive .	Assessment	(CCA) 30 N	Marks		
		Сотро	onents		Mark Di	stribution		
		Module '	Test -1		5 N	Iarks		
	Module Test -2				5 Marks			
		Module Test -3			5 Marks			
Assessment		Module Test -4			5 Marks			
Types		Assignment/ Seminar			5 Marks			
		Quiz/V	Quiz/Viva		5 Marks			
		Total			30 Marks			
	В	End Seme	ster Evalua	tion (ESE)	70 marks			
		Question Pattern						
		[Maximum T	'ime 2 Houi	rs, Maximur	n Marks 7()]		
		Module	Part A	Part B	Part C	Total		
		woaute	2 Marks	6 Marks	10	I Utai		

			Marks	
Ι	2	2	1	5
II	2	2	2	6
III	2	2	1	5
IV	2	2	2	6
Total no of questions	8	8	6	22
Number of questions to be answered	5	5	3	13
Total Marks	10	30	30	70

1. Conway, John B. Functions of one complex variable, 2nd Edition.Springer, 1978.

SUGGESTED READINGS:

- 1. Lars V. Ahlfors, Complex Analysis, Third edition, McGraw Hill Internationals, 1979
- 2. Gamelin, Theodore. Complex analysis. Springer Science & Business Media, 2003.
- 3. Priestley, H. A. Introduction to Complex Analysis. OUP Oxford, 2003.
- 4. Mathews, John, and Russell Howell. *Complex analysis for mathematics and engineering*. Jones & Bartlett Publishers, 2012.
- Cartan, Henri. *Elementary theory of analytic functions of one or several complex variables*. Courier Corporation, 1995.
- 6. Lang, Serge. Complex analysis. Vol. 103. Springer Science & Business Media, 2013.

ADVANCED READINGS:

- Asmar, Nakhlé H., and Loukas Grafakos. *Complex analysis with applications*. Berlin: Springer, 2018.
- Nevanlinna, Rolf, and Veikko Paatero. *Introduction to complex analysis*. Vol. 310. American Mathematical Society, 2007.

(Govt. Autonomous)

Programme	B.Sc. Mathematics Honou	B.Sc. Mathematics Honours							
Course Name	Introduction to Metric Spa	Introduction to Metric Spaces							
Type of Course	Discipline Capstone Cou	Discipline Capstone Course (Advanced) – DCC							
Course Code	MCE7DCCMAT402	MCE7DCCMAT402							
Course Level	400-499	400-499							
Course Summary	An introduction to fund continuity, connectedness	amental co , smallness	oncepts in conditions	Metric Spac to metric spa	e and genera	llization of			
Semester	7	Credits	Credits			Total			
Course Details	Learning Approach	Lecture	Tutorial	Practical/ Practicum	Others	Hours			
Course Detuns		4	0	0	0	60			
Pre-requisites, if any	Set and Functions, Fundamentals of Analysis								

CO No.	Expected Course Outcome	Learning Domains *	PO No				
Upon the	e completion of the course, student will be able to:		•				
1	Visualize the concept of distance as a mathematical function in various spaces	A, S, I, Ap	1, 2, 3, 4, 10				
2	Develop their abstract thinking skills.	A, C, S, I, Ap	1, 2, 4, 10				
3	Define and Illustrate the concept of metric space and its properties	K, U,S,Ap	1, 3, 4, 10				
4	Explain the concept of continuity connectedness and compactness	K, U,S	1, 3, 4, 10				
5	Explain the fundamental concepts of modern analysis and generalization to arbitrary sets.	K, A, C	1, 2, 3, 4, 10				
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest							
(I) and A	Appreciation (Ap)						

Module	Units	Course description	Hrs	CO No.
	1.1	Inequalities		1
	1.2	Metric Spaces		1
	1.3	Sequences in metric spaces		1,2
1	1.4	Cauchy Sequence (Definitions, Examples and statements only)	15	2,3
	1.5 Completion in Metric Spaces (Proof of Theorem 1.5.3 is excluded)			2,3
	Text 1: Ch	apter 1 – Sections: 1.1 to 1.5	1	
	2.1	Open and Closed Sets		3
2	2.2	Relativization and subspaces		3,5
	2.3		3,5	
	Text 1: Ch	apter 2 – Sections: 2.1 to 2.3	[
	3.1	Continuous Mapping		4
3	3.2	Uniform continuity		2,4
	3.3	3 Homeomorphism , Equivalent metrics and Isometry		2,4
	Text 1: Ch	apter 3 – Sections: 3.1, 3.4 & 3.5	I	1
	4.1	Connectedness		4,5
4	4.2	Bounded sets and compactness		4,5
	4.3	Other characterisation of compactness		4,5
	4.4	Continuous functions on compact spaces		4,5

	Text	Text 1: Chapter 4 – Sections: 4.1; Chapter 5 - Sections: 5.1 to 5.3						
5	Teac session be ev	Feacher Specific Contents (This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned) This content will be evaluated internally						
Teaching Learning Approach	and	Classroom Procedure (Mode of transaction) Chalk and Talk, Group Discussion, Seminar, Interactive Sessions, Tutorials, Assignment, Quiz						

Teaching and Learning Approach		Classroom Pr	ocedure (I	Node of tra	nnsaction)	
		MOI	DE OF ASS	SESSMENT		
	Α	Continuous Compr	ehensive	Assessme	nt (CCA) 3	0 Marks
		Compo	nents		Mark Di	stribution
		Module	Test -1		5 N	Iarks
		Module Test -2			5 N	Iarks
		Module Test -3			5 N	Iarks
		Module Test -4			5 Marks	
		Assignment	/ Seminar		5 Marks	
		Quiz/Viva Total			5 Marks	
Assessment					30 Marks	
Types	В	End Semester Evaluation (ESE) 70 marks				
		Question Pattern				
		[Maximum Time 2 Hours, Maximum Marks 70]				
			Part A	Part B	Part C	
		Module	2 Marks	6Marks	10 Marks	Total
		Ι	2	2	1	5
		II	2	2	2	6
		III	2	2	1	5
		IV	2	2	2	6
		Total no of questions	8	8	6	22

Number of questions to be answered	5	5	3	13
Total Marks	10	30	30	70

1. Satish Shirali, Harikrishnan L Vasudeva, Metric Spaces, Springer – Verlag London Limited 2006.

SUGGESTED READINGS:

1. Simmons, George F. Introduction to Topology and Modern Analysis, McGraw-Hill Book Company, 1963.

2. Joshi, K.D. Introduction to General Topology, Wiley Eastern Ltd, 1984.

ADVANCED READING:

1. Dugundji. Topology, Universal Book Stall, New Delhi, 1989.

(Govt. Autonomous)

Programme	B.Sc. Mathemati	B.Sc. Mathematics Honours					
Course Name	Algebraic Struc	tures in De _l	pth : Group	s and Rings			
Type of Course	Elective – DCE						
Course Code	MCE7DCEMAT	400					
Course Level	400-499	400-499					
Course Summary	The objective of the course is to introduce advanced concepts in groups and rings. The first module includes direct products, classification of finitely generated abelian groups, factor groups and homomorphisms, normal subgroups and inner automorphisms. The second module covers computations of factor groups, simple groups, group actions and application of G-sets to finite groups. The third module includes isomorphism theorems, Sylow theorems and its applications. The fourth module contains homomorphism factor rings and concepts on ideals.						
Semester	7	Credits	Credits 4			Total Hours	
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Per week	
Details	Approach	4	0	0	0	60	
Pre- requisites, if any	Fundamentals of	Groups and	Rings				

CO No.	Expected Course Outcome	PO No	Learning Domains *
Upon	the completion of the course, student will be able to:		
1	Understand and construct direct products of groups and analyse the structure of finitely generated abelian groups	Е	1, 2, 3, 10
2	Comprehend the concepts of normal subgroups, factor groups and simple groups, identify and apply the properties of factor groups and homomorphisms, compute factor groups and analyse their properties	А	1, 2, 3, 4
3	Understand group action on a set, construct examples of G-sets and orbits and apply the results on G-sets to the study of finite groups	An	1, 2, 3, 10
4	Comprehending Sylow theorems, students will apply the Sylow theory to classify groups of different orders.	Е	1, 2, 4

5	Analysing homomorphisms, factor rings, prime and maximal ideals	An	1, 2, 3,				
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill							
(S), Interest (I) and Appreciation (Ap)							

Module	Units	Course description	CO No.	Hrs		
	1.1	Direct Products	1			
	1.2	The structure of finitely Generated Abelian groups	1			
	1.3	Applications	1	17		
1	1.4	Factor groups	2	17		
	1.5	Homomorphisms and factor groups	2			
	1.6	Normal subgroups and inner automorphisms	2			
	1.7	Section 9 problems 1to17, section12 problems 1 to 16				
	Text 1: Se	ctions: 9(9.2, 9.5, 9.19, 9.20 statement only) & 12(12.8, 12.14	4 statement	only)		
	2.1	Factor group computations and Simple groups	2			
	2.2	Center and Commutator subgroups. Statement of Theorem 13.17.	2			
2	2.3	Group action on a set: The notion of a group action	3	17		
	2.4	Isotropy subgroups, Orbits	3			
	2.5	Application of G-sets to finite groups	3			
	2.6	Section 13 problem 1 to 17, section 14 problem 1 to 11				
	Text 1: Se	ctions: 13(13.22 statement only) & 14(14.19 and 14.20state	ement only)			
	3.1	Isomorphism theorems	2			
2	3.2	Sylow theorems	4	4.4		
3	3.3	3 Applications of the Sylow theorems	4	14		
	3.4 Section 16 problem 1 to 5, section 17 problems 1 to 13					
	Text 1: Se only)	ctions: 16(16.2, 16.8 statement only) & 17(17.4, 17.7 and 1	7.12 statem	ent		
	4.1	Factor rings	5			
1	4.2	Homomorphisms, Properties of homomorphisms	5	12		
+	4.3	Fundamental homomorphism theorem (for rings)	5	12		
	4.4	Prime and maximal ideals	5			

	4.5	Prime Fields	5					
	4.6	Section 30 problems 1 to 10 and section 31 problems 1 to 15						
	Text 1: Sections: 30 (30.6,30.11,30.16 statement only) & 31.1 to 31.20(31.17,31.18,31.19 statement only)							
5	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned</i>) This content will be evaluated internally							

Tooching	Classroom Procedure (Mode of transaction)						
Learning Approach	Dir ope	rect Instruction, Brainston erative Learning.	rming Lectu	ıre, Explicit	Teaching,	Active Co-	
		MO	DE OF ASS	ESSMENT			
	Α	Continuous Comp	rehensive	Assessme	nt (CCA) 3	0 Marks	
		Compo	onents		Mark Di	stribution	
		Module	Test -1		5 N	Iarks	
		Module	Test -2		5 N	Iarks	
		Module Test -3			5 N	Iarks	
		Module Test -4			5 Marks		
		Assignment/ Seminar			5 Marks		
		Quiz/Viva			5 Marks		
		Tot	al		30 Marks		
Assessment	В	End Semester Evaluation (ESE) 70 marks					
Types			Question	Pattern			
		[Maximum]	Time 2 Hour	rs, Maximur	n Marks 70	1	
		L	Part A	Part B	Part C	-	
		Module	2 Marks	6Marks	10 Marks	Total	
		Ι	2	2	1	5	
		II	2	2	2	6	
		III	2	2	1	5	
		IV	2	2	2	6	
		Total no of questions	8	8	6	22	
		Number of questions to be answered	5	5	3	13	
		Total Marks	10	30	30	70	

 Fraleigh, John B., and Neal E. Brand. A First Course in Abstract Algebra 8th ed, Pearson Education, 2021

SUGGESTED READINGS:

- 1. Dummit, David S., and Richard M. Foote. Abstract Algebra. 3rd ed. Wiley, 2003.
- 2. Artin, M. Algebra. 2nd ed., Pearson Education, 2017.
- 3. Herstein, I. N. Topics in Algebra, 2nd Edition, John Wiley and Sons, 2010
- 4. Gallian, Joseph A, Contemporary Abstract Algebra, 10th edition, Cengage 2015.
- 5. Musili, C. Introduction to Rings and Modules, 2nd revised Edition, Narosa, 1997.
- 6. Hungerford, Thomas W, Algebra, Springer, 2011.

ADVANCED READINGS:

- 1. Hungerford, Thomas.W., Algebra, 4th Print 2003 Edition.
- 2. Lang, Serge, Algebra, 4th Print 2005 Edition

(Govt. Autonomous)

Programme	B.Sc. Mathematics	B.Sc. Mathematics Honours					
Course Name	Real Analysis						
Type of Course	Elective-DCE						
Course Code	MCE7DCEMAT4	01					
Course Level	400-499						
Course Summary	This course covers essential topics in mathematical analysis, including functions of bounded variation and rectifiable curves, the Riemann Stieltjes integral, sequence and series of functions. Students will explore the Riemann-Stieltjes integrals. Its applications to vector-valued functions will be addressed, along with discussions on uniform convergence, integration, and differentiation in the context of sequences and series of functions. The course concludes with an examination of equicontinuous families, the Weierstrass theorem, and the power series.						
Semester	7	Credits			4	Total	
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours	
Details	Approach	4	0	0	0	60	
Pre- requisites, if any	Fundamentals of Mathematical Analysis						

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon t	he completion of the course, student will be able to:		
1	Understand and analyse functions of bounded variations and its properties.	U,An	1, 2, 3
2	To analyze and parametrize curves, calculate arc lengths, and apply additive and continuity properties and foster problem- solving skills in practical mathematical scenarios.	An	1,2,3,10
3	To understand the Riemann-Stieltjes integral	U,An	1, 2, 3
4	To analyse the properties of Riemann-Stieltjes integral	An	1,2,3,10
5	To understand and analyse the concept of uniform convergence	U, An	1,2,3,10

	and its properties.					
6	To understand Equicontinuous families of functions, Weierstrass	U,An	1,2,3,10			
 theorem and understand power series *Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap) 						

Module	Units	Course description	Hrs	CO No.			
	1.1	Introduction, properties of monotonic functions, functions of bounded variationTotal variation, additive property of total variation, total variation on (a, x) as a function of x.		1			
	1.2			1			
1	1.3	Functions of bounded variation expressed as the difference of increasing functions, continuous functions of bounded variation.	15	1			
	1.4	Curves and paths, rectifiable path and arc length		2			
	1.5Additive and continuity properties of arc length.			2			
	Text 1: Chapter 6 - Sections: 6.1 to 6.11.						
	2.1	2.1Definition and existence of the integral2.2Properties of the integral2.3Integration and differentiation.2.4Integration of vector valued functions.		3			
	2.2			4			
2	2.3			4			
	2.4			4			
	Text 2: Chapter 6 - Sections: 6.1 to 6.25						
	3.1	Sequence and series of functions - Discussion of main problem.		5			
3	3.2	Uniform convergence.	15	5			
	3.3 Uniform convergence and Continuity.			5			

	3.4	Uniform convergence and Integration		5		
	3.5	Uniform convergence and Differentiation		5		
	Text 2: 0	Chapter 7 - Sections: 7.1 to 7.18.				
4						
	4.1	Equicontinuous families of functions.		6		
	4.2	The Weierstrass theorem	15	6		
	4.3	Power series		6		
	Text 2: Chapter 7 - Sections: 7.19 to 7.27; Chapter 8 – Sections: 8.1 to 8.5.					
5	Teacher Specific Contents (This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned) This content will be evaluated internally					

Teaching and		Classroom Procedure (Mode of transaction)							
Learning		Lecture, Tutorials, Activity, cooperative learning, Direct instruction,							
Approach		Brainstorming							
		MO	DE OF ASS	ESSMENT					
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks							
		Components			Mark Di	stribution			
		Module	Test -1		5 N	Iarks			
		Module	Test -2		5 N	Iarks			
		Module Test -3			5 Marks				
		Module Test -4			5 Marks				
Assessment Types		Assignment/ Seminar			5 Marks				
51		Quiz/Viva			5 Marks				
		Total			30 Marks				
	B	End Seme	End Semester Evaluation (ESE) 70 marks						
			Question	Pattern					
		[Maximum]	Time 2 Hour	rs, Maximun	n Marks 70]			
			Part A	Part B	Part C				
		Module	2 Marks	6 Marks	10 Marks	Total			
		Ι	2	2	1	5			

	II	2	2	2	6
	III	2	2	1	5
	IV	2	2	2	6
	Total no of questions	8	8	6	22
	Number of questions to be answered	5	5	3	13
	Total Marks	10	30	30	70

- 1. Apostol, Tom M. Mathematical Analysis. Narosa, 1974.
- 2. Rudin, Walter. Principles of mathematical analysis. Vol. 3. New York: McGraw-hill, 1976

SUGGESTED READINGS:

1. Stein, Elias M., and Rami Shakarchi. Real analysis: measure theory, integration, and

Hilbert spaces. Princeton University Press, 2009.

2. Abbott, Stephen. Understanding analysis..springer publication, 2015.

3. Fitzpatrick, Patrick. Advanced calculus.Vol. 5. American Mathematical Soc., 2009.

4. Folland, Gerald B. Real analysis: modern techniques and their applications. Vol. 40.

John Wiley & Sons, 1999.

5. Royden, H.L. Real Analysis, 2nd edition, Macmillan, New York.

ADVANCED READINGS:

1.Gelbaum, Bernard R., and John MH Olmsted. Counterexamples in analysis. Courier

Corporation, 2003.

2. Carothers, Neal L. Real analysis. Cambridge University Press, 2000.

3. Rudin, Walter. Real and complex analysis, Mcgraw-hill international editions:

Mathematics series, 1987.

- 4. Axler, Sheldon. Measure, integration & real analysis. Springer Nature, 2020.
- 5. Widder, David V. Advanced calculus. Courier Corporation, 2012.
- 6. Franklin, Philip. A treatise on advanced calculus. Courier Dover Publications, 2016.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B Sc Mathematics Honours						
Course Name	Graph Theory	Graph Theory					
Type of Course	Elective – DCE	2					
Course Code	MCE7DCEMA	T402					
Course Level	400-499						
Course Summary	This course provides a comprehensive introduction to graph theory, equipping students with the knowledge and skills to analyse and solve problems in diverse fields like computer science, biology, chemistry, sociology, operations research etc.						
Semester	7 Credits 4 Total						
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours	
Details	Approach	4	0	0	0	60	
Pre- requisites, if any	Definition of a	graph					

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		
1	Understand basic concepts and properties of graphs.	U	1, 2, 10
2	Analyse real world problems using graph theory	An	1, 2, 3, 10

CO No:	Expected Course Outcome	Learning Domains	PO No:
3	Understand the theoretical approach of graph theory	U	1, 2, 10
4	Identify research problems relating to graph theory	Ι	1, 2, 3, 4, 6,9, 10

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course Description		Hours				
	1.1	Introduction, Basic concepts, Sub graphs, Degrees of vertices.	1					
	1.2	Paths and Connectedness.	3					
	1.3	Operations on graphs. 3		15				
1	1.4	1.4Directed Graphs: Introduction, basic concepts.3						
	1.5	Tournaments.	3					
	Text 1: to 2.3	Text 1: Chapter 1 – Sections: 1.1 to 1.5, 1.8; Chapter 2 – Sections: 2.1 to 2.3						
	2.1	Connectivity: Introduction, Vertex cuts and edge cuts	1, 3					
	2.2	Connectivity and edge connectivity.	3	15				
2	2.3	Blocks.						
	Text 1: Chapter 1 – Sections: 3.1 to 3.3, 3.4.1 & 3.4.2							
3	3.1	Trees: Introduction, Definition, characterization and simple properties.						
	3.2	Centres and Centroids.	1, 3					
	3.3	Independent Sets.	1, 2	15				
	3.4	Eulerian and Hamiltonian Graphs: Introduction, Eulerian graphs.						
	3.5	Hamiltonian Graphs, Closure of graphs.	1, 2, 3					

	Text 1: Chapter 4 – Sections: 4.1 to 4.3; Chapter 5 – Sections: 5.1, 5.2; Chapter 6 – sections: 6.1 to 6.3					
	4.1	Graph Colorings: Introduction, Vertex Coloring.	1, 2, 3,4			
	4.2	Planarity: Introduction, Planar and Nonplanar Graphs.	1, 2, 3	15		
4	4.3	Euler Formula and its consequences, K5 and K3, 3 are Non-planar Graphs.	2, 3			
	Text 1: Chapter 7 – Sections: 7.1 to 7.2.5; Chapter 8 – Sections: 8.1 to 8.4					
5	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned</i>) This content will be evaluated internally					

Teaching and		Classroom Procedure (Mode of transaction)						
Learning	Di	Direct Instruction, Brain Storming Approach, Interactive instruction, Group						
Approach		Discussion, Presentation by individual student/ group representatives.						
		MODE OF ASSESSMENT						
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks						
		Components			Mark Distribution			
		Module	Test -1		5 Marks			
		Module Test -2			5 Marks			
		Module Test -3			5 Marks			
		Module Test -4			5 Marks			
Assessment Types		Assignment/ Seminar			5 N	Iarks		
		Quiz/Viva			5 N	Iarks		
		Tot	30 Marks					
	В	End Semester Evaluation (ESE) 70 marks						
			Question Pattern					
		[Maximum T	[Maximum Time 2 Hours, Maximum Marks 70]					
			Part A	Part B	Part C			
		Module	2 Marks	6 Marks	10 Marks	Total		
		I	2	2	1	5		

	II	2	2	2	6
	III	2	2	1	5
	IV	2	2	2	6
	Total no of questions	8	8	6	22
	Number of questions to be answered	5	5	3	13
	Total Marks	10	30	30	70

1. Balakrishnan, R., Ranganathan, K. A *Textbook of Graph Theory*. Second edition, Springer New York, 2012.

SUGGESTED READINGS:

- 1. Chartrand, Gary, and Zhang, Ping. *Chromatic Graph Theory*. United States, CRC Press, 2019.
- 2. Clark, John, and Derek Allan Holton. *A First Look at Graph Theory*. World Scientific Publishing Company, 1991.
- Rosen, Kenneth H. Discrete Mathematics and Its Applications. United States, McGraw-Hill Higher Education -, 2016.
- 4. West, Douglas Brent. *Introduction to Graph Theory*. United Kingdom, Pearson, 2018.
- 5. Wilson, Robin J. *Introduction to Graph Theory* UPDF EBook. United Kingdom, Pearson Education, 2015.

ADVANCED READINGS:

- 1. Bondy, John Adrian, and Murty, U. S. R. *Graph Theory with Applications*. United Kingdom, Macmillan, 1976.
- 2. Hsu, Lih-Hsing, and Lin, Cheng-Kuan. *Graph Theory and Interconnection Networks*. United States, CRC Press, 2008.
- 3. Haynes, Teresa W., et al. *Fundamentals of Domination in Graphs*. United States, CRC Press, 2013.
- 4. Biggs, Norman. *Algebraic Graph Theory*. United Kingdom, Cambridge University Press, 1993.
- 5. Kottarathil, Jomon, et al. *Graph Theory and Decomposition*. CRC Press, Boca Raton, USA, 2024.
- 6. Li, Xueliang, et al. Graph Energy. United States, Springer New York, 2012.
- 7. Bapat, Ravindra B. Graphs and Matrices. India, Springer London, 2014.

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	Applied Economics Honours						
Course Name	Principles of Qua	ntitative A	nalysis				
Type of Course	Discipline Specif	Discipline Specific Course (DSC B)					
Course Code	MCE7DSCMAT40	MCE7DSCMAT400					
Course Level	400-499						
Course Summary	This is an advanced	This is an advanced course in Mathematics especially for Economics students					
Semester	7	Credits			4	Total	
Course Details	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours	
	Approach	4	0	0	0	60	
Pre-requisites, if any	Algebra of real nur	Algebra of real numbers, set theory,Differentiation					

COURSE OUTCOMES (CO)

Co no.	Expected course outcome	Learning domains *	Po no			
Upon th	e completion of the course, student will be able to:					
1	Analyse how economies evolve over time with the help of sequences	A	1, 2,6,, 10			
2	Identify optimal solutions within realistic boundaries.	S	1, 2, 3, 6,10			
3	Complex economic systems with the help of vector space	Α	1,2,6,10			
4	Solve complex optimization problems and make better economic forecasts	a	1, 2, 3, 10			
*remember (k), understand (u), apply (a), analyse (an), evaluate (e), create (c), skill (s), interest (i) and appreciation (ap)						

Module	Units	Course description	Hrs	CO No.
	1.1	Sequence of real numbers		1
	1.2 Sequences in \mathbb{R}^m			1
1	1.3	Open set ,closed set	13	1
-	1.4	Compact set, functions between Euclidean spaces		1
	1.5			1
		Text 1: Chapter 12 - (exclude <i>proof</i>)Section 13.1		
	2.1	Cauchy sequences		2
2	2.2	Compact sets		2
	2.3	Connected sets	17	2
	2.4	Alternative forms		2
	2.5			3
		Text 1: Chapter 29 section 29.1-29.4 exclude proof		
3	3.1	Vector spaces and subspaces		3
	3.2	Basis and dimension of a proper subspace	15	3
	3.3	Row space, Column space, Null space		3
	3.4	Abstract vector space		3
		Text 1: Chapter 27 Sections27.1-27.6 Exclude proof		
	4.1	First order linear differential Equation with constant coefficient and constant term	15	4
	4.2	Variable coefficient and variable term		4
4	4.3	Exact differential equation		4
	4.4	Non-linear differential equation of first order and first degree		4
		Text 2: Chapter 15 - Sections: 15.1, 15.3.15.4 and 15.5		
5		Teacher Specific Contents (This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned) This content will be evaluated internally		

Teaching	Classroom Procedure (Mode of transaction)						
and Learning Approach		Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion					
		MODE OF ASSESSMENT					
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks					
Assessment		Components	Mark Distribution				
Types		Module Test -1	5 Marks				
		Module Test -2	5 Marks				

	Module	5 Marks				
	Module	Test -4		5 Marks		
	Assignmen	Assignment/ Seminar				
	Quiz/	Viva		5 N	Iarks	
	Tot	tal		30 N	Marks	
В	End Seme	ster Evalua	ation (ESE)	70 marks		
		Question	Pattern			
	[Maximum]	նime 2 Houյ	rs, Maximur	n Marks 70	1	
	Module	Part A	Part B	Part C		
		2 Marks	6Marks	10 Marks	Total	
	I	2	2	1	5	
	II	2	2	2	6	
	III	2	2	1	5	
	IV	2	2	2	6	
	Total no of questions	8	8	6	22	
	Number of questions to be answered	5	5	3	13	
	Total Marks	10	30	30	70	

TEXT BOOK:

1. .Carl P. Simon and Lawrence Blume, Mathematics for economists, W. W. Norton and Company, 1994.

SUGGESTED READINGS:

- 1. Anjan Mukherji and Subrata Guha, Mathematical Methods and Economic Theory, OUP India, 2011
- 2. K. G. Binmore, Mathematical analysis, Cambridge University Press, 1991.
- 3. Avinash K. Dixit, Optimization in economic theory, Oxford University Press,
- 4. David Gale, The theory of linear economic models, McGraw-Hill, 1960.
- 5. G. Hadley, Linear algebra, Narosa Publishing House, 1987.
- 6. Carl P. Simon and Lawrence Blume, Mathematics for economists, W. W. Norton and Company, 1994.
- 7. Alton H. Smith and Jr. Walter A. Albrecht, Fundamental concepts of analysis, Prentice Hall of India, 1966.
- 8. Gilbert Strang, Introduction to linear algebra, Wellesley-Cambridge Press, 2003.
- 9. Rangarajan K. Sundaram, A first course in optimisation theory, Cambridge University Press, 1996.
- 10. Patrick Suppes, Introduction to logic, Affiliated East-West Press, 1957.
- 11. Knut Sydsaeter and Peter J. Hammond, Mathematics for economic analysis, first, fourth impression ed., Pearson Education, 2009.
- 12. Alfred Tarski(1965), Introduction to logic and to the methodology of deductive science, Oxford University Press, 1965.

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.A./ B.Sc. /B.Co	B.A./ B.Sc. /B.Com(Honours)						
Course Name	Dynamic Optim	ization						
Type of Course	Discipline Specif	Discipline Specific Course (DSC B)						
Course Code	MCE7DSCMAT4	401						
Course Level	400-499	400-499						
Course Summary	Dynamic optimiza decisions over tim are available later programming and	<i>D</i> ynamic optimization course equips the students with the tools to make the best decisions over time. It tackles situations where your choices now affect what options are available later. The course focuses on two main approaches: dynamic programming and optimal control						
Semester	7	Credits			4	Total		
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours		
Details	Approach	4	0	0	0	60		
Pre- requisites, if any	Difference equation	Difference equation, Differential Equation						

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	PO No	Learning Domains *					
Upon the completion of the course, student will be able to:								
1	understand continuous, and discrete Time Processes,	U	1,2,3					
2	apply optimal control theory	А	1,2,5,6,8,10					
3	analyse the infinite Horizon problem	An	1,2,5,6,8					
4	Evaluate Economic growth	Е	1,2,6,8,9,10					
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)								

COURSE CONTENT

Module	Units	Course description	CO No.	Hrs		
	1.1	Continuous Time Processes,	1			
	1.2	Discrete Processes	1			
1	1.3	Motion on the plane	1	13		
	1.4	Stability of Periodic Points, The logistic map	1			
	Text 1 Chap	ter 13 section 13.1 to13.3				
	2.1	Introduction to the Optimal Control Theory	2			
	2.2	A Basic Optimal Control Problem	2			
2	2.3 Necessary Conditions		2	17		
	2.4 The Maximum Principle for the Basic Problem		2			
	Text 1 Chapter 14 section 14.1 to14.4					
	3.1	Sufficient Conditions for an Optimal Control				
3	3.2	Variants of the Basic Problem	3	17		
	3.3	Infinite Horizon Problems	3			
	Text 1 Chap	ter 14 section 14.5 to14.7				
	4.1	Introduction, The Stability of Competitive Equilibrium	5			
4	4.2	4.2 Optimal Economic Growth Ramsey-Cass-Koopmans Model		13		
	4.3 The Social Planner's Problem		5			
	Text 1 Chap	ter 15 section 15.1 to15.4				
5	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, fiel visit etc. as specified by the teacher concerned</i>) This content will be evaluated internally					

Teaching		Classroom Procedure (Mode of transaction) Lecture, Teaching, Interactive Instruction, Seminar, Group Assignment, Library Work and Group Discussion					
and Learning Approach							
Assossment	MODE OF ASSESSMENT						
Types	Α	A Continuous Comprehensive Assessment (CCA) 30 Marks					
		Components	Mark Distribution				

	Module Test -1			5 Marks	
	Module	Module Test -2			
	Module	5 N	5 Marks		
	Module	Module Test -4			
	Assignment	/ Seminar		5 N	Iarks
	Quiz/	Viva		5 N	Iarks
	Tot	al		30 N	Marks
B	End Seme	ster Evalua	ation (ESE)	70 marks	
		Question	Pattern		
	[Maximum]	Time 2 Hour	rs, Maximur	n Marks 70]
		Part A	Part B	Part C	
	Module	2 Marks	6Marks	10 Marks	Total
	Ι	2	2	1	5
	II	2	2	2	6
	III	2	2	1	5
	IV	IV 2 2			
	Total no of questions88		6	22	
	Number of questions to be answered	5	5	3	13
	Total Marks	10	30	30	70

TEXTBOOK:

1. Anjan Mukherji and Subrata Guha, Mathematical Methods and Economic Theory, OUP India, 2011.

SUGGESTED READINGS:

- 1. K. G. Binmore, Mathematical analysis, Cambridge University Press, 1991.
- 2. Avinash K. Dixit, Optimization in economic theory, Oxford University Press,
- 3. David Gale, The theory of linear economic models, McGraw-Hill, 1960.
- 4. G. Hadley, Linear algebra, Narosa Publishing House, 1987.
- 5. Carl P. Simon and Lawrence Blume, Mathematics for economists, W. W. Norton and Company, 1994.

6. Alton H. Smith and Jr. Walter A. Albrecht, Fundamental concepts of analysis, Prentice Hall of India, 1966.

- 7. Gilbert Strang, Introduction to linear algebra, Wellesley-Cambridge Press, 2003.
- 8. Rangarajan K. Sundaram, A first course in optimisation theory, Cambridge University Press, 1996.
- 9. Patrick Suppes, Introduction to logic, Affiliated East-West Press, 1957.

10. Knut Sydsaeter and Peter J. Hammond, Mathematics for economic analysis, first, fourth impression ed., Pearson Education, 2009.

11. Alfred Tarski(1965), Introduction to logic and to the methodology of deductive science, Oxford University Press, 1965.

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	B. Sc. Mathematics Honours					
Course Name	Functional Analy	ysis				
Type of Course	Discipline Capstone Course (Advanced) – DCC					
Course Code	MCE8DCCMAT4	400				
Course Level	400-499					
Course Summary	This is a comprehensive curriculum on vector spaces and related concepts which facilitate between Linear Algebra and Advanced Functional Analysis. It covers various aspects of normed spaces, linear operators, inner product spaces and Hilbert spaces. These chapters delve into the properties of vector spaces equipped with different structures, like norms and inner products. The concepts progress from normed spaces, linear operators and functionals to more specialized spaces like Hilbert spaces, emphasizing their properties, relationships and specific identities related to inner product spaces. The course ends with Hahn- Banach Theorem, the most important theorem connected with bounded linear operators, which is an extension theorem for linear functionals and guarantees that a normed space is richly supplied with linear functionals. The concepts and problems are intended to help the student to develop skill and intuition in Functional Analysis and its applications.					
Semester	8	Credits	1	Ι	4	Total Hours/
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	VVeek
Details	Approach	3	0	1	0	75
Pre- requisites, If any	Ordinary Calculus of finite dimensio	s, Metric spa nal vector sp	ces, Cauchy baces.	sequences, Compl	ete spaces,	Linear Algebra

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No				
Upon	the completion of the course, student will be able to:						
1	Analyze the characteristics of normed spaces and their impact on their elements. Evaluate the unique properties and behavior of finite-dimensional normed spaces.	U, An,E	1,2,9				
2	Analyze the behavior and properties of linear operators and functionals. Understand the Hahn-Banach Theorem and its generalization to complex vector and normed spaces.	U, An,A	1,2,9				
3	Evaluate the structure and properties of inner product and Hilbert spaces, focusing on completeness and orthogonality. Understand orthogonal complements, direct sums, and orthonormal sets and sequences.	U, An,A, E	1,2,9,10				
4	Analyze functionals on Hilbert spaces and Hilbert adjoint operators. Evaluate properties of self-adjoint, unitary, and normal operators.	U, An,A, E	1,2,9,10				
*Rem (S), II	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
1	1.1	Vector space		1
	1.2	Normed spaces, Banach spaces		1
	1.3Further properties of normed spaces. (Proof of Completion theorem (2.3-2) excluded)1.4Finite dimensional normed spaces and subspaces		20	1
	1.4	Finite dimensional normed spaces and subspaces		1
	1.5	5 Compactness and finite dimension.		1
		Problems from section 1.2 and 1.3 (Practicum)		
		Text 1: Chapter 2 - Sections: 2.1 to 2.5		
2	2.1	Linear operators.		2
Z	2.2	Bounded and continuous linear operators.	18	2

	2.3	2.3 Linear functionals (Algebraic dual, second algebraic dual and algebraic reflexivity are excluded)						
	2.4	Linear operators and functionals on finite dimensional spaces (Proof of theorem 2.9-3 excluded)		2				
	2.5	2.5 Normed space of operators, Dual spaces.						
		Problems from sections 2.3 and 2.4 (Practicum)						
		Text 1: Chapter 2 - sections: 2.6, 2.7, 2.8.1 to 2.8.8, 2.9 & 2.10		_				
	3.1	Inner product spaces, Hilbert spaces.		3				
	3.2	3.2 Further properties of inner product spaces. (Proof of Completion theorem (3.2-3) excluded)						
	3.3	Orthogonal complements						
3	3.4	.4 Direct sums						
	3.5	3.5 Orthonormal sets and sequences						
	3.6	3.6 Series related to orthonormal sequences and sets (Example 3.5-1 excluded)						
	3.7		3					
		Text 1: Chapter 3 - Sections: 3.1 to 3.6	•					
	4.1	Representation of Functionals on Hilbert Spaces. (Proof of Riesz representation theorem (3.8-4) excluded)		4				
	4.2	Hilbert-adjoint operator.		4				
	4.3	Self-Adjoint, Unitary and Normal Operators.		4				
4	4.4	Zorn's lemma.	17	4				
	4.5	Hahn-Banach Theorem.		4				
	4.6	4.6 Hahn-Banach Theorem for Complex Vector Spaces and Normed Spaces						
		Text 1: Chapter 3 - Sections: 3.8 to 3.10; Chapter 4 - Sections: 4	.1 to 4	1.3				
5	Teac field	her Specific Content (This can be either classroom teaching, practic visit etc. as specified by the teacher concerned) This content will be	al ses: e evalu	sion, 1 ated				
	inter	nally						

Teaching		Classroom Pr	ocedure (l	Mode of tra	nsaction)			
and Learning Approach	Leo	Lecture methods, Problem Solving Methodologies, Tutorials						
		MO	DE OF ASS	SESSMENT				
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks						
		Components			Mark Distribution			
		Module	Test -1		5 N	Iarks		
		Module	Test -2		5 N	Iarks		
		Module	Test -3		5 N	Iarks		
		Module Test -4				5 Marks		
		Assignment/ Seminar			5 Marks			
		Quiz/Viva			5 Marks			
		Total			30 Marks			
Assessment	B	End Semester Evaluation (ESE) 70 marks						
Types		Question Pattern						
		n Marks 70]					
			Part A	Part B	Part C			
		Module	2 Marks	6Marks	10 Marks	Total		
		Ι	2	2	1	5		
		II	2	2	2	6		
		III	2	2	1	5		
		IV	2	2	2	6		
		Total no of questions	8	8	6	22		
		Number of questions to be answered	5	5	3	13		
		Total Marks	10	30	30	70		

TEXT BOOK:

1. Erwin Kreyszig, *Introductory Functional Analysis with applications*, Wiley International publication. 1978 (Reprint 2007)

SUGGESTED READINGS:

- 1. Limaye, B V, Functional Analysis. New Age International (P) LTD, New Delhi, 2004.
- 2. Limaye, B V, Linear Functional Analysis for Scientists and Engineers, Springer 2016
- 3. Simmons, G F. *Introduction to Topology and Modern Analysis*, Mc Graw-Hill, New York, 1963.
- 4. Siddiqi, A H. Functional Analysis with Applications, Tata Mc Graw-Hill, New Delhi, 1989.
- Walter Rudin. *Functional Analysis, Second Edition*, International Series in Pure & Applied Mathematics, Tata Mc Graw Hill, 1973.

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	B Sc Mathematics Honours
Course Name	Measure Theory and Integration
Type of Course	Discipline Capstone Course (Advanced) – DCC
Course Code	MCE8DCCMAT401
Course Level	400-499
	This course provides a comprehensive exploration of measure theory and
	integration, with a primary focus on the development and applications of the
	Lebesgue measure and integral. The syllabus covers fundamental concepts such
	as Lebesgue outer measure, sigma algebra of Lebesgue measurable sets, outer
	and inner approximation techniques, countable additivity, and the Borel-Cantelli
	Lemma. The second part of the course introduces Lebesgue measurable
	functions and their integration. Topics include Lebesgue integration for sums,
	products, and compositions of functions, sequential pointwise limits, and simple
	approximations. Classical theorems, including Littlewood's three principles,
	Egoroff's theorem, and Lusin's theorem, are presented without proof to provide
Course	a practical understanding of their applications. The Lebesgue integration section
Summary	covers a comparison between the Riemann and Lebesgue integrals. Students will
	learn to calculate the Lebesgue integral of bounded measurable functions over
	sets of finite measure, as well as explore the integral for measurable non-
	negative functions. The General Lebesgue Integral is introduced along with
	discussions on countable additivity and continuity of integration. The course
	also addresses the integration of derivatives and the differentiation of
	indefinite integrals. The latter part of the course extends the study to general
	measure spaces. Students will explore properties and constructions of measures
	and measurable sets. Signed measures, Hahn and Jordan decompositions, and
	the Caratheodory Measure induced by an outer measure are discussed. The

	construction of out	construction of outer measures is covered, leading to advanced theorems such					
	as the Radon-Nikodym Theorem, Lebesgue Decomposition Theorem, and						
	Radon-Nikodym Derivative. The course concludes with a generalization of						
	measurability conc	epts for f	unctions o	n general m	easurable	e spaces. Students	
	will study integrati	on over g	eneral mea	asure spaces,	utilizing	the Caratheodory	
	construction of me	asure. The	e construct	tion of produ	uct measu	ares is introduced,	
	and classic theorem	ns of Fubir	ni and Tone	elli are prove	en. By the	e end of the course,	
	students will have	e a compi	rehensive	understandir	ng of me	easure theory and	
	integration, with the	e ability to	apply thes	se concepts ir	n both Lel	besgue and general	
	measure spaces. T	he course	aims to e	quip student	ts with tl	ne analytical tools	
	necessary for advar	nced math	ematical a	pplications a	nd resear	ch.	
Semester	8	Credits			4		
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours	
	Approach	3	0	2	0	75	
Pre- requisites, If any Fundamentals of Mathematical Ana			atical Anal	lysis			

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No
Upon	the completion of the course, student will be able to:		
1	Acquire a deep understanding of the principles behind the Lebesgue measure, including its introduction, outer measure, and the sigma algebra associated with Lebesgue measurable sets	U	1, 2, 3
2	Develop skills in both outer and inner approximation methods for Lebesgue measurable sets, allowing them to analyze and manipulate these sets effectively	S	1, 2,9
3	Master the principles of countable additivity and continuity, fundamental for Lebesgue measure theory through theoretical understanding and practical applications,	А	1,2,9
4	Recognize and analyze non-measurable sets, including specific examples like the Cantor set, and comprehend the implications of their existence	Е	1, 2, 9

5	Gain a theoretical understanding of Littlewood's three principles and the theorems of Egoroff and Lusin, allowing them to apply these principles in various scenarios without requiring formal proof.	An	1,2		
6	Develop proficiency in integrating functions within the Lebesgue framework, including the Riemann integral, Lebesgue integral of bounded and non-negative measurable functions, and the General Lebesgue Integral	С	1,2,3,9		
7	Apply integration techniques to differentiate indefinite integrals, showcasing a practical understanding of the interplay between differentiation and integration	А	1,, 2, 3, 9, 10		
8	Acquire a comprehensive understanding of general measure spaces, including their properties and construction, enabling them to analyze and work with measures in a broader context.	U	1,2,10		
9	To understand the Caratheodory construction of measure, allowing them to construct product measures and prove classic theorems such as Fubini and Tonelli in the context of general measure spaces.	S	1,2,3,10		
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)					

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
1		Lebesgue Measure		
	1.1	Introduction	1	20
	1.2	Lebesgue outer measure	1	
	1.3	The σ algebra of Lebesgue measurable sets	1	
	1.4	Outer and inner approximation of Lebesgue measurable sets	2	
	1.5	Countable additivity, continuity and Borel- Cantelli Lemma	2, 3	
		Problems (Practicum)		

Module	Units	Course Description	CO No:	Hours				
	Text 1:	Text 1: Chapter 2 - Sections: 2.1 to 2.5						
2		Measurable Functions						
	2.1	Non measurable set	3, 4					
	2.2	The Cantor set and Cantor Lebesgue function	3, 4					
	2.3	Lebesgue Measurable Functions: Sums, products and compositions	5					
	2.4	Sequential pointwise limits and simple approximation	5	17				
	2.5 Littlewood's three principles, Egoroff's theorem, and Lusin's theorem (All theorems without proof)		5					
		Problems (Practicum)						
	Text 1: Chapter 2 - Sections: 2.6 to 2.7, Chapter 3- 3.1 to 3.3							
3		Lebesgue Integration		_				
	3.1	The Riemann Integral	6					
	3.2	The Lebesgue integral of a bounded measurable function over a set of finite measure	6					
	3.3	The Lebesgue integral of a measurable non negative function	6	20				
	3.4	The General Lebesgue Integral.	6					
	3.5	Countable Additivity and Continuity of Integration	6					
	3.6	Integrating Derivatives: Differentiating Indefinite Integrals	7					
		Problems (Practicum)						

Module	Units	Course Description	CO No:	Hours					
	Text 1:	Text 1: Chapter 4 - Sections: 4.1 to 4.5; Chapter 6 - Section: 6.5							
4		Measure spaces: Their properties and construction							
	4.1	Measures and Measurable Sets (Theorems without proof)	8						
	4.2	Signed Measures: The Hahn and Jordan Decompositions	8						
	4.3	4.3 The Caratheodory Measure Induced by an Outer Measure (Propositions 5,6 and 7 Statement only)		18					
	4.4	The Construction of Outer Measures	9						
	4.5	The Radon-Nikodym Theorem (without proof), The Lebesgue Decomposition Theorem and Radon- Nikodym Derivative	8, 9						
	Text 1:	Chapter 17 - Sections: 17.1 to 17.4; Chapter 18 - Section	on: 18.4						
5	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned</i>) This content will be evaluated internally								

Teaching and		Classroom Procedure (Mod	le of transaction)			
Approach	Lecture and Tutorial					
		MODE OF ASSES	SMENT			
	A Continuous Comprehensive Assessment (CCA)					
		Components	Mark Distribution			

Teaching and	Classroom Procedure (Mode of transaction)						
Learning Approach	Lecture and Tutorial						
-	Module Test -1	Module Test -1					
	Module Test -2			5 Marks			
	Module Test -3			5 Marks			
	Module Test -4			5 Marks			
	Assignment			5 Marks			
	Quiz/Viva	Quiz/Viva					
	Total			30 Marks			
	Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]						
		Part A	Part B	Part C			
	Module	2 Marks	6 Marks	10 Marks	Total		
	Ι	2	2	2	6		
	II	2	2	1	5		
	III	2	2	2	6		
	IV	2	2	1	5		
	Total no of questions	8	8	6	22		
Assessment Types	Number of questions to be answered	5	5	3	13		
	Total Marks	10	30	30	70		

TEXT BOOK:

1. Royden, H. L., Fitzpatrick, P.M. Real Analysis FourthEdition, Pearson Education, 2010.

SUGGESTED READINGS:

- Barra, G. de. *Measure Theory and integration*, New Age International (P) Ltd., New Delhi, 1981 (Reprint 2003)
- 2. Halmos, P.R. Measure Theory, D. van Nostrand Co., 1974
- 3. Jain, P.K., and Gupta, V.P. *Lebesgue Measure and Integration*, New Age International(P) Ltd., New Delhi, 1986 (Reprint 2000).

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	B Sc Mathematics	B Sc Mathematics Honours					
Course Name	Basic Topology	Basic Topology					
Type of Course	Elective-DCE	Elective-DCE					
Course Code	MCE8DCEMAT4	MCE8DCEMAT400					
Course Level	400-499	400-499					
Course Summary	Course introduces Connectedness an	Course introduces properties of topological spaces, including Compactness, Connectedness and Separation axioms					
Semester	8	Credits 4 Total				Total	
Course Details	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours	
	Approach	3	0	2	0	75	
Pre-requisites, if any	Fundamentals of A	Analysis an	d Basics of	Metric spaces.			

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No				
Upon the completion of the course, student will be able to:							
1	Define and illustrate the concept of subspace and closed sets of a topological space	K, U, S, Ap	1,2, 3,10				
2	Describe the concept of neighbourhoods and interior point of a set in a topological space	U, I, Ap	1,2, 3, 4, 10				
3	Prove a selection of theorems concerning topological spaces, continuous functions, and quotient topologies.	U, An, Ap	1,2,4,10				
4	Define and illustrate the concepts of compact and Lindeloff Space and their properties	K, U, S, An, S, I, Ap	1,2,4,10				
5	Define connectedness, separation axioms, and prove related theorems	K, U, S, An, S, I, Ap	2,3,4,10				
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)							

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.					
	1.1	Definition and related concepts. Examples of topological spaces		1					
	1.2	Bases and subbases	20	1					
1	1.3	Subspaces	20	1					
	1.4	Closed Sets and Closure		1					
	Problems (Practicum)			1					
	Text 1:	Chapter 4 – Sections: 1, 2, 3 (3.1 to 3.9), 4; Chapter 5 – Section:	1						
	2.1	Neighbourhoods, Interior and Accumulation points		2					
2	2.2	Continuity. Related concepts		3					
	Problems (Practicum)			2,3					
	Text 1: Chapter 5 – Sections: 2 (2.1 to 2.10 and 2.13) & 3 (3.1 to 3.10)								
	3.1	3.1 Making functions continuous and Quotient Spaces 3.2 Smallness condition on a Space Problems (Practicum)		3					
3	3.2			4					
				3,4					
	Text 1: Chapter 5 – Sections: 4 (4.1 to 4.12); Chapter 6 – Section 1(1.1 to 1.11)								
	4.1	Connectedness		5					
4	4.2	Path Connectedness (Practicum)	20	5					
	4.3	Separation axioms		5					
	Problems (Practicum) 5								
	Text 1: Chapter 6 – Sections: 2 & 3 (3.6 to 3.8); Chapter 7 – Section: 1								

Teacher Specific Content	Content
--------------------------	---------

This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned .	
This content will be evaluated internally	

Teaching		Classroom Pr	ocedure (l	Mode of tra	nsaction)		
and Learning	Cha	Chalk and talk, Group discussion, Seminar, Interactive sessions, Tutorials,					
Approach	Ass	Assignment, Quiz					
		MOI	DE OF ASS	ESSMENT			
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks					
		Сотро	nents		Mark Di	stribution	
		Module	Test -1		5 N	Iarks	
		Module	Test -2		5 N	Iarks	
		Module	Test -3		5 N	Iarks	
		Module Test -4			5 N	Iarks	
		Assignment/ Seminar			5 Marks		
		Quiz/Viva			5 Marks		
		Total			30 N	Marks	
Assessment	B	End Seme	70 marks				
Types		Question Pattern					
		[Maximum Time 2 Hours, Maximum Marks 70])]	
		Module	Part A	Part B	Part C 10	Total	
			2 Marks	6 Marks	Marks		
		I	2	2	1	5	
		II	2	2	2	6	
		III	2	2	1	5	
		IV	2	2	2	6	
		Total no of questions	8	8	6	22	
		Number of questions to be answered	5	5	3	13	
		Total Marks	10	30	30	70	

TEXT BOOK:

1. K. D. Joshi. Introduction to General Topology, Third Edition, New Age

SUGGESTED READINGS:

- 1. Munkres J.R, Topology-A First Course, Prentice Hall of India (P). Ltd., New Delhi, 2000.
- 2. Willard, Stephen. General Topology, Addison-Wesley, 2004.
- 3. George F Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill

Book Company, 1963.

ADVANCED READINGS:

1. Dugundji. Topology, Universal Book Stall, New Delhi, 1989.

2. J. Arthur Seebach, Lynn Arthur Steen, Counter Examples in Topology, Dover Publications, 1995

MAHARAJA'S COLLEGE, ERNAKULAM (Govt. Autonomous)

Programme	B.Sc. Mathematics Honours							
Course Name	Exploring Field	Exploring Field Extensions and Galois Theory						
Type of Course	Elective- DCE							
Course Code	MCE8DCEMAT4	401						
Course Level	400-499	400-499						
Course Summary	The objective of the course is to learn more about field theory. The first module covers topics on the ring of polynomials, factorization of polynomials, etc. The second module covers concepts on extension fields, finite fields, etc. The third module includes automorphisms of fields, splitting fields, etc. Topics on separable extensions, Galois theory, etc. are covered in the fourth module.							
Semester	8	Credits 4 Total				Total		
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Hours/week		
Details	Approach	3		1		75		
Pre- requisites, if any	Concepts from Fu and Rings	ndamental	s of Groups	and Rings and Ac	lvanced T	heory of Groups		

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains *	PO No					
Upon	Upon the completion of the course, students will be able to:							
1	Explain the ring of polynomials, master polynomial factorization, and comprehend the ideal structure in $F[x]$.	An	1, 2, 3, 10					
2	Comprehend the concept of extension, distinguish the various types of extensions and analyze finite fields.	An	1, 2, 3, 10					
3	Examine field automorphisms, categorize splitting fields and apply the isomorphism extension theorem.	А	1, 2, 3, 10					
4	Analyse separable extensions and understand the Galois theorems.	Е	1, 2, 3,5, 9, 10					
*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)								

COURSE CONTENT

Module	Units	Course description	CO No.	Hrs	
	1.1	Rings of polynomials, The evaluation homomorphisms	1		
	1.2	Factorization of polynomials over a field, The division algorithm in F[x]	1		
	1.3	Irreducible polynomials, Uniqueness of factorization in F[x]	1	15	
1	1.4	Ideal Structure in , Application to unique factorization in F[x]	1		
	Problems (Practicum) section 27 problem 1 to 17, section 28 problem 1 to 22)				
	Text 1 statem	: Sections: 27(27.1,27.2,27.4 statement only), 28 (28.6, 28.7, 28.19, 28.2 ent only) & 31 (31.21 to 31.27)	0		
	2.1	Introduction to Extension fields, Algebraic and transcendental elements, The irreducible polynomial for α over F	2		
	2.2	Simple extensions	2		
2	2.3	Algebraic extensions, Algebraically closed fields and algebraic closures	2		
	2.4	Finite fields, The existence of GF(pn)	2	20	
	Problems (Practicum) Section 39 problems 1 to 18 section 40 problems 1 to 8				
	Text 1: Sections: 39(39.14 statement only), 40 (40.1 to 40.18) (40.4, 40.6 statement only) & 42(42.5, 42.6, 42.9 statement only)				
	3.1	Introduction to Galois theory	3		
	3.2	Conjugation isomorphism	3		
	3.3	Splitting fields, The isomorphism extension theorem	3	20	
3	3.4	Properties of splitting fields	3		
		Problems (Practicum) Section 43 problem 1 to 22, section44 problem 1 to 17)			
	Text 1 (Stater	: Sections: 43 (43.19 and 43.20 statement only), 44 (44.1 to 44.4, 44.5 nent only) & 44.6 to 44.15)			
	4.1	Separable extensions, Characteristic p	4		
	4.2	Counting Automorphisms, The primitive element theorem	4	1	
4	4.3	Normal extensions	4	20	
	4.4	Galois Theory, The Galois theorems(proof excluded)	4	1	
		Problems (Practicum) Section 45 problem 1 to 13 and section 46 problem 1 to 8			

	Text 1: Sections 45 (45.9 statement only)& 46					
5	Teacher Specific Content (<i>This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned</i>) This content will be evaluated internal					
Practicum						
P racticum is designed to provide supervised practical application						
of theor	retical knowledge and skills. It's purpose is to encourage creativity and					
develop	develop Problem Solving Skills. The practicum component is to be done in the					
classroom under the strict guidance of the teachers. A minimum of 30 problems is						
to be solved, and a handwritten copy of the solutions should be kept in the						
departm	nent.					

Teaching	Classroom Procedure (Mode of transaction)						
and	Direct I	nstruction: Explicit Teachi	ng, Lecture	, Interactive	Instruction: A	ctive Co-	
Learning Approach	operativ	operative Learning, Seminar, Presentation by Individual Student					
	MODE OF ASSESSMENT						
	Α	Continuous Com	prehensive	Assessmen	t (CCA) (30 N	larks)	
	Components				Ma	rk Distribution	
		Module Test- I				5 Mark	
Assessment		Module	Test- II			5 Mark	
Types		Module	Module Test- III				
		Module		5 Mark			
		Assignment/Seminar			5 Mark		
		Quiz/		5 Marks			
	В	En	d Semester	Examinati	on (Written)		
			Q	uestion Patt	ern		
		[Maxin	num Time	2 Hours, Ma	aximum Marl	ks 70]	
		Module	Module Part A Part B			Total	
			2 Marks	6 Marks	10 Marks		
		I	2	2	1	5	
		Ш	2	2	2	6	
		III	2	2	1	5	
		IV	2	2	2	6	

Total no of questions	8	8	6	22
Number of questions to be answered	5	5	3	13
Total Marks	10	30	30	70

TEXT BOOK:

1. Fraleigh, John B., and Neal E. Brand. A First Course in Abstract Algebra 8thed,Pearson Education, 2021.

SUGGESTED READINGS:

- 1. Dummit, David S., and Richard M. Foote. Abstract Algebra. 3rd ed. Wiley, 2003.
- 2. Artin, M. Algebra. 2nd ed., Pearson Education, 2017

3.Herstein, I. N. Topics in Algebra, 2nd Edition., John Wiley and Sons, 201027

- 4. Gallian, Joseph A, Contemporary Abstract Algebra, 10th edition, Cengage 2021.
- 5. Musili, C. Introduction to Rings and Modules, 2nd revised Edition, Narosa, 1997.

ADVANCED READINGS:

- 1. Hungerford, Thomas.W., Algebra, 4th Print 2003 Edition.
- 2. Lang, Serge, Algebra, 4th Print 2005 Edition

MAHARAJA'S COLLEGE, ERNAKULAM

(Govt. Autonomous)

Programme	B Sc Mathematics Honours						
Course Name	Optimization Techniques						
Type of Course	Elective- DCE	Elective- DCE					
Course Code	MCE8DCEMA	Г402					
Course Level	400-499						
Course Summary	This Mathemat methods, incluc challenges relat Linear Program planes and br fundamental con as well as sec Furthermore, t Optimization, ut searches. Constr gradient projecti	ics underg ling simple ed to Integ ming (MII anch-and-b cepts in gra uential act he course ilizing tools ained Optir on and Lag	raduate co ex techniqu ger Linear (LP), utilizin ound meth ound meth oph theory, s tivity scheor provides s like Taylo nization is a trange multi	ourse investigate ues and duality Programming (II ng cutting-edge a hods. The curr such as minimum duling and max an introducti or's series, Fibona also covered, inco	theorems theorems LP) and M approaches ciculum a path and s timum flo on to U cci, and G orporating	programming . It explores Aixed Integer s like cutting lso includes panning trees, w problems. Jnconstrained olden Section topics such as	
Semester	8 Credits 4 Total					Total Hours/	
Course	Learning	Lecture	Tutorial	Practical/ Practicum	Others	Week	
Details	Approach	3	0	1	0	75	

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		
1	Apply graphical method to solve LP problems, mastering simplex tableau and duality principles for solving LP problems.	A	1, 2
2	Understand ILP, MILP problems, cutting plane, and Branch-and- Bound methods, enhancing problem-solving and optimization skills	U	1, 2
3	Analyze graphs, solve minimum path and spanning tree problems, and optimize sequential activities with maximum flow.	An	1, 2
4	Find the solution of unconstrained optimization problems using Taylor's series, Fibonacci, Golden Section, and Hooke-Jeeves methods.	E	1,2, 3
5	Find the solution of constrained optimization problems using gradient projection, Lagrange multipliers, and constrained derivatives techniques.	Е	1, 2, 3
*Rem (S), II	nember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E Interest (I) and Appreciation (Ap)), Create (C)	, Skill

COURSE CONTENT

Module	Units	Course description	Hrs	CO No.
		Linear Programming		
1		LP in two-dimensional space and problems, Statement of		
1	1.1	General LP problems, Definitions of FS, BS, BFS and OS,	20	1
		Simplex tableau and problems.		

	1.2	Definition of Artificial Variable and Big-M Method, Meaning of Degeneracy in LP Problems		1
	1.3	Duality in LP Problems, Duality Theorems (statements only), Dual Simplex Method		1
		Problems from 1.1,1.2 and 1.3 (Practicum)		
		Text 1: Chapter 3 – Sections: 3.2, 3.3, Definitions in Sections 3 3.14, 3.17, 3.18 & 3.20	.4 to 3.7	7, 3.12 to
		Integer Programming		
	2.1	General ILP and MILP Problem		2
2	2.2	Cutting Plane Method	15	2
2	2.3	Branch and Bound Method	15	2
		Problems from sections 2.2 and 2.3 (Practicum)		
		Text 1: Chapter 6 – Sections: 6.3, 6.5, 6.6 & 6.8		
		Flow in Networks		
2	3.1	Graphs: Definition and Notations		3
5	3.2	Minimum Path Problem, Spanning Tree of Minimum Length.	15	3
	3.3	Scheduling of Sequential Activities, Maximum Flow Problem.		3
		Text 1: Chapter 5 – Sections: 5.2 to 5.7		
		Non Linear Programming		
	4.1	Taylor's Series Expansions Necessary and Sufficient Condition		4
	4.2	Fibonacci and Golden Section Search	25	4
4	4.3	Hooke and Jeeves Search	25	4
	4.4	4.4 Gradient Projection		5
	4.5	Lagrange Multipliers		5
		Text 1: Chapter 11 – Sections: 11.2 to 11.7		
	Teacher Specific Contents (<i>This can be either classroom teaching, practical session, field visit etc. as specified by the teacher concerned</i>) This content will be evaluated internally			

		Classroom Procedure (Mode of transaction)				
Teaching	Di	Direct Instruction: Explicit Teaching and E-learning.				
and Learning Approach	Interactive instruction: Engage in collaborative learning through active participation, seminars, group assignments, group discussions, and presentations by individual students or group representatives.					
		MODE OF ASSESSMENT				
Assessment	Α	A Continuous Comprehensive Assessment (CCA) 30 Marks				
Types		Components	Mark Distribution			
		Module Test -1	5 Marks			

	Module	Test -2		5 N	Iarks
	Module Test -3		5 Marks		
	Module	Test -4		5 N	Iarks
	Assignmen	t/ Seminar		5 N	Iarks
	Quiz/	Viva		5 N	Iarks
	Tot	al		30 N	Marks
В	End Seme	ster Evalua	ation (ESE)	70 marks	
		Question Pattern			
	[Maximum]	Time 2 Hour	rs, Maximur	n Marks 70]
		Part A	Part B	Part C	
	Module	2 Marks 6 Marks	10	Total	
				Marks	
	Ι	2	2	1	5
	II	2	2	2	6
	III	2	2	1	5
	IV	2	2	2	6
	Total no of questions	8	8	6	22
	Number of questions to be answered	5	5	3	13
	Total Marks	10	30	30	70

TEXT BOOKS:

- 1. Mittal, K. V. and Mohan, C. *Optimization Methods in Operations Research and Systems Analysis*; *5th Edition*, New Age Publishers, 2020.
- 2. Ravindran, Philips, Solberg. *Operations Research Principles and Practice*; 2nd Edition, Wiley India Publishers, 2012.

SUGGESTED READINGS:

- 1. Swarup, K. Gupta , P. K., and Man Mohan, *Operations Research*. S. Chand and Sons Publishers, 2010.
- 2. Sharma, S. D. *Operations Research Theory, Methods And Applications*;, Kedar Nath Ram Nath Publishers, 2014.

ADVANCED READING:

1. Taha, A. H. Operations Research: An Introduction. Pearson Publishers, 2012.

A REFERENCE	MAHARAJA'S COLLEGE, ERNAKULAM(Government Autonomous)				
Programme	B.Sc. Mathemat	ics Honours			
Course Name	PROJECT				
Type of Course	PRJ				
Course Code	MCE8PRJMAT400				
Course Level	400-499				
Course Summary	The student is expected to undertake a project under the supervision and guidance of a faculty member and submit a report				
Semester	8 Credits 12				

Project Preparation and Evaluation Guidelines

- 1. All students shall prepare and submit a project report as part of the Honours programme. The project has to be undertaken on an individual basis and shall be submitted in Semester 8.
- 2. The general guidelines of the Regulations shall apply for both Internal and External Evaluations of Project Report.
- 3. The Project shall be done under the supervision and guidance of faculty of the department.
- 4. Students shall submit the report in the prescribed format at least three weeks before the commencement of end semester examination of the eighth semester. Internal assessment shall be based on completion of the project, following the norms prescribed in general guidelines.
- 5. The area of the project shall be related to Mathematics.
- 6. The student shall submit copies of the project report, either printed or typed. There shall be a minimum of 40 pages and a maximum of 75 pages. The report may be hard bound or soft bound or spirally bound and the printing can be either double sided or single sided. A softcopy

of the report shall also be submitted to the department.

- 7. The report shall contain the following:
 - Title page with topic, details of the student with register number, supervisor details and month and year of submission.
 - Certificate from Supervising teacher and counter signed by the Head of the Department with department seal.
 - Declarationbythestudentwhichshallincludeplagiarismdetailsalso. Therelevantguidelines issued by the UGC and the University shall be strictly adhered to.
 - Acknowledgement
 - > Contents
 - Preferably 4 to 5 chapters.
 - Bibliography(References may be presented in AMS style)
- 8. The student shall do progress presentation frequently. The final presubmissionpresentationshallbeanopenpresentationwiththehelpofaudiovisualaidsandshallbe evaluated by a Board of Internal Examiners including the Guide and the Head of the Department, Final submission of the project report shall be based on the suggestions of the open presentation.
- The End Semester Evaluations shall be done by an external examiner and the Head of the Department/the nominee of the Head of the Department. There shall be a vivo voce.
- 10. It is the responsibility of the student to put earnest effort into the completion of the project. The consequences of plagiarism beyond permissible level in project work may result in failure of the course, in addition to other consequences.

Objectives:

- Application of Knowledge: Utilize theoretical and practical knowledge gained during coursework to solve real-life situations or complex problems.
- Independent Research: Conduct independent research, demonstrating the ability to work autonomously and think critically.
- > Critical Analysis: Develop skills in critical analysis and synthesis of

information, evaluating various sources and data.

- Professional Preparedness: Prepare for future academic or professional endeavors by gaining experience in a research-oriented environment.
- Scientific Communication: Improve scientific communication skills through the preparation of reports, presentations, and discussions of findings.

EvaluationCriteria-12credit project

Total Marks-200(CCA-60andESA-140)

A) ContinuousComprehensiveAssessment-60 marks

Synopsis Presentation	20 marks
Technical Skill	20 marks
Report & Overall Performance	20 marks
Total	60 marks

B) EndSemesterAssessment-140marks

1. Report-70marks

Relevance of the Topic	20 marks
Review of Literature	20 marks
Results and Discussion	30 marks
Total	70 marks

2. Viva Voce-70marks.

Presentation	30 marks
Viva Voce	40 marks
Total	70 marks

It may be noted that any common regulation/guideline issued by the University regarding Internship and Project shall supersede the above-mentioned guideline.